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Abstract 

 

In Chapter 1, I study an infinitely repeated moral hazard problem in which the principal 

privately observes and publicly reports the agent's output, as in Fuchs (2007). The role of 

the agent's private strategies, which depend on the history of his private efforts, is 

examined in providing incentives for the principal to be truthful. I show that in order for 

his effort history to work as an incentive device, the agent has to use a mixed strategy, 

since otherwise his efforts are predictable by the principal and thus, in effect, public 

information. However, hiding the agent's efforts from the principal incurs a non-

negligible efficiency loss, which may, or may not be justified by the efficiency gain from 

the use of the agent's private strategies. Moreover, the agent's optimal strategy is shown 

to be consistent with empirical studies on how employees respond to subjective 

performance evaluations. 

In Chapter 2, we studies an equilibrium model of the labor market with moral hazard in 

which jobs are dynamic contracts, job separations are terminations of optimal dynamic 

contracts, and terminations are used as an incentive device. Transitions from 

unemployment to new jobs are modeled as a process of matching and bargaining. Non-

employed workers make consumption and saving decisions as in a typical growth model, 

but they must also decide whether or not to participate in the labor market. The 

equilibrium of the model is characterized. We then calibrate the model to the U.S. labor 

market to study quantitatively worker turnover, compensation dynamics and distribution. 

We show that the model can generate equilibrium wage dispersions similar to that in the 

data. Hornstein, Krusell and Violante (2006) argue that standard search matching models 
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can generate only a very small differential between the average wage and the lowest wage 

paid in the labor market. 



www.manaraa.com

1

1 Repeated Moral Hazard with Private Evaluation: Why the

Agent�s Mixed Strategies Matter

1.1 Introduction

Subjective performance measures are widely used in practice, as observed by Prender-

gast (1999). For instance, the quality of an analyst�s research report is subjectively

evaluated by his supervisor. Subjective evaluations are essentially private, therefore

non-veri�able by outsiders. Consequently, employers have incentives to underreport

performance measures in order to save on wages. In addition, employees may regard

performance evaluations as either being fair or not.

Adams (1963) was among the �rst to suggest that when an employer�s evaluation

of an employee�s performance does not match the employee�s own evaluation, the

employee regards it as being unfair and exerts less e¤ort in the future. The link

between perceived fairness and subsequent performance is con�rmed empirically by

Ball, Trevino and Sims (1994). Moreover, Greenberg (1986) shows that an employee

is more likely to regard a positive evaluation as being fair than a negative one.

In short, an employee�s performance depends on the perceived fairness of his prior

performance evaluation by an employer, which in turn depends on how he evaluates his

own prior performance. Because the employee�s self-evaluation is essentially private,

it is natural to model this via private strategies.

However, in the standard repeated principal-agent problem, the agent�s output is

publicly observable to both parties. As a result, no e¢ ciency is lost if we restrict the

agent to public strategies, which only depend on the public history of outputs. This

is true no matter whether the agent�s output is veri�able by outsiders, as in Spear

and Srivastava (1987), or not, as in Baker, Gibbons and Murphy (1994)[1].

When the agent�s output is not publicly observable, each party may have private

information about it. By assuming that each party receives a private signal about

the agent�s output, Macleod (2003) studies optimal static contracting with variable

degrees of signal correlation. He shows that as long as the agent�s signal is informative

about the principal�s, the agent can use it to provide incentives for the principal to be

truthful. Speci�cally, the principal is punished for evaluating the agent�s performance

as being unsatisfactory, if the agent evaluates his own performance otherwise.

I extend Macleod (2003) to the dynamic environment in which the principal pri-

vately observes and publicly reports the agent�s output, as in Levin (2003) and Fuchs

(2007). Both parties are risk neutral such that total payo¤ is used to measure ef-

�ciency. This is a repeated game with private monitoring which lacks a recursive

[1]See Levin (2003) for more details.
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representation, as in Abreu, Pearce and Stacchetti (1991) for repeated games with

public monitoring[2]. The agent�s private information is the history of his e¤orts and

the principal�s private information is the history of true outputs. The agent�s self-

evaluation is de�ned directly as his e¤ort, instead of the private signal received as in

Macleod (2003).

I �rst show that if the agent uses a pure strategy as in Fuchs (2007), his e¤orts are

predictable by the principal and thus, in e¤ect, public information. Therefore, again,

no e¢ ciency is lost if we restrict the agent to public strategies, when it comes to weak

perfect Bayesian equilibria, as de�ned in Mas-colell, Whinston and Green (1995). To

see this, �rst notice that the principal perfectly predicts what the agent�s e¤ort is in

the �rst period, as speci�ed by the agent�s pure strategy. And, the agent�s e¤ort in

the second period is predicted as a deterministic function of the reported output and

the agent�s e¤ort in the �rst period, and so on. Hence, the principal�s belief about the

agent�s e¤ort history is degenerate, and independent of the history of true outputs.

Moreover, because the principal�s belief is independent of the history of true outputs,

she reports truthfully only if she is indi¤erent between reporting the low and high

outputs[3].

When it comes to sequential equilibria as considered in this paper, the agent�s

strategies are most likely to be private. The reason is that di¤erent private e¤ort

histories of the agent generate di¤erent beliefs, therefore di¤erent optimal continuation

strategies. However, given that the agent uses a pure strategy, the set of allocations

attainable by sequential equilibria is shown to be the same as the set of allocations

attainable by weak perfect Bayesian equilibria in which the agent is restricted to

public strategies.

To summarize, the agent�s use of mixed strategies is necessary for his prior e¤orts

to be private, therefore potentially e¤ective in providing incentives for the principal.

Moreover, I show that by using mixed strategies, the agent is able to provide stronger

incentives in the sense that the principal strictly prefers reporting truthfully.

I consider the optimal perfect public equilibrium as the benchmark case, which

have been partially characterized by Levin (2003) and Fuchs (2007) under the con-

straints such as, the principal reports truthfully, and the agent is indi¤erent between

shirking and exerting e¤ort[4]. I solve for the optimal perfect public equilibrium ex-

[2]Even for repeated games with public monitoring, the recursive representation does not hold if
players use mixed strategies. Also, see Kandori (2002) for an excellent introduction on repeated
games with private monitoring.
[3]Because the principal�s belief about the agent�s e¤ort history is independent of the history of
true outputs, truth-reporting basically requires her to take di¤erent actions given the same belief.
This is possible only if each action taken is optimal. Speci�cally, both reporting the low and high
outputs have to be optimal for the principal.
[4]The �rst constraint is imposed by both Levin (2003) and Fuchs (2007). In addition, the second
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plicitly without such constraints. Speci�cally, I generalize the method of Radner,

Myerson and Maskin (1986) to derive an upper bound on the maximum total payo¤

attainable by perfect public equilibria. Then, the optimal perfect public equilibrium

attaining the upper bound is constructed, which consists of a static contract, a pure

strategy for the agent, and a non-truth-reporting strategy for the principal.

The optimal contract is static instead of dynamic, which generalizes the static

contract result of Levin (2003) without imposing the constraint that the principal

reports truthfully. Moreover, the agent�s optimal public strategy is pure instead of

mixed, therefore his e¤orts are predictable by the principal as argued above. Further-

more, the principal does not reveal the low output with probability one. As suggested

by Prendergast (1999), this phenomenon is well documented in empirical studies as

leniency bias, which implies that an supervisor tends to overstate an subordinate�s

performance. This re�ects the fact that the low output occurs with positive probabil-

ity, even when the agent exerts e¤ort. In other words, the low output is not a perfect

indicator for shirking.

Moreover, Abreu, Milgrom and Pearce (1991) show that it is optimal for the prin-

cipal to observe the agent�s outputs for more than one period in order to accumulate

more information, before rewarding or punishing the agent. Consequently, when the

principal delays reporting[5], it becomes di¢ cult for the agent to provide incentives

for the principal to be truthful.

In order to focus on how the agent provides incentives for the principal, I also solve

for the optimal perfect public equilibrium, in which the principal reports the agent�s

output truthfully in each period. It is shown that the agent�s optimal public strategy

depends only on the reported output in the prior period, rather than the complete

history of reported outputs. Speci�cally, the agent exerts e¤ort with probability one

if the reported output in the prior period is high, and with a probability less than one

otherwise. Moreover, it is shown that no e¢ ciency is lost by requiring the principal

to report the agent�s output truthfully, as long as the discount factor is larger than

a critical value. Intuitively, given that the principal has incentives to report the

low output in order to save on compensations, the agent punishes the principal for

reporting it by exerting less e¤ort in the next period.

With private strategies, the agent is able to further make the distinction between

the reported low output in a period when he shirked, and the reported low output in

a period when he exerted e¤ort. Apparently, the latter is a better indicator that the

principal lied than the former. However, in order to provide incentives more e¤ectively

one is imposed by Fuchs (2007).
[5]Even though the principal has to report in each period, the reporting delay can be achieved by
reporting a certain output regardless of the true output. See Section 3.3 for an example.
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for the principal by making the distinction as described above, the agent must hide

his e¤orts from the principal by shirking with positive probability. This is the basic

trade-o¤ in this paper.

In order to address this trade-o¤, I consider a class of sequential equilibria in which

the agent�s strategy depends on the reported output and his e¤ort in the prior period,

and the principal reports the agent�s output truthfully in each period. Consequently,

the agent�s strategy can be represented as a �nite state automaton[6], and so can the

principal�s. These are correlated sequential equilibria according to Phelan and Skrzy-

pacz (2008). Notice that the optimal perfect public equilibrium I solved previously

can be treated as a special case.

I show that there is only one static contract consistent with this class of sequential

equilibria[7]. Moreover, given this static contract and the principal�s truth-reporting

strategy, it can be shown that the agent is always indi¤erent between shirking and

exerting e¤ort. Therefore, in order to construct an equilibrium, I need only make sure

that given the agent�s strategy, the principal has incentives to be truthful.

I �rst consider a subclass of sequential equilibria, in which the principal has in-

centives to report truthfully, regardless of her belief about whether the agent has

shirked or exerted e¤ort. These are belief-free equilibria according to Ely, Hörner and

Olszewski (2005). Within this subclass, the agent�s optimal strategy is shown to be

public, which implies that the agent�s e¤ort in the prior period cannot work e¤ectively

as an incentive device.

Then, given a belief-based equilibrium in which the principal�s incentives depend

non-trivially on her belief about whether the agent has shirked or exerted e¤ort, it

is shown that the agent�s e¤ort is always "private", in the sense that the principal is

unable to infer it with certainty under any circumstances. In addition, the agent�s

output always contains the "right" message, in the sense that there exists a �xed

threshold such that no matter what happened in the past, the low (high) output

makes the principal believe that the probability of the agent having exerted e¤ort is

less (greater) than this threshold.

I further show that the agent�s strategy in the optimal belief-free (also public as

shown above) equilibrium, cannot be approximated by a sequence of his strategies in

belief-based equilibria[8]. The reason is that in the optimal belief-free equilibrium,

the principal is indi¤erent between reporting the low and high outputs, instead of

preferring strictly being truthful. Therefore, no matter how small the agent�s deviation

is from his strategy in the optimal belief-free equilibrium, the principal could lose

[6]Both the set of outputs and the set of e¤orts are �nite in this paper.
[7]In the sense that there exists a sequentital equilibrium of this class with respect to the contract.
[8]The agent�s strategy is a point in the space [0; 1]4 given two possible outputs and two possible
e¤ort levels.
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incentives to be truthful[9].

Furthermore, I show that there exists " > 0 such that in any belief-based equilib-

rium, the principal cannot expect the agent to exert e¤ort with a probability greater

than 1� " under any circumstances. On the contrary, in the optimal belief-free equi-
librium, upon reporting the high output in the prior period, the principal expects

the agent to exert e¤ort with probability one. This is a non-negligible e¢ ciency loss

associated with the need of hiding the agent�s e¤orts from the principal. Numerical

analysis shows that this e¢ ciency loss may, or may not be justi�ed by the e¢ ciency

gain from using the agent�s e¤ort in the prior period as an incentive device.

This paper is also related to the literature on the e¢ ciency implications of pri-

vate strategies in repeated games with public monitoring[10]. I consider belief-based

equilibria in an in�nitely repeated game, instead of belief-based equilibria in �nitely

repeated games as in Mailath, Matthews and Sekiguchi (2002), or belief-free equilibria

in in�nitely repeated games as in Kandori and Obara (2006).

Moreover, the agent�s optimal strategy is shown to be consistent with empirical

studies, e.g. Greenberg (1986), on how employees respond to subjective performance

evaluations. Speci�cally, conditional on the reported output being low in the prior

period, the agent would exert less e¤ort if he exerted e¤ort, other than shirked, in the

prior period.

The rest of the paper is organized as follows: Section 1.2 sets up the model. Section

1.3.1 solves for the optimal perfect public equilibria with and without imposing the

constraint that the principal reports truthfully. Section 1.3.2 characterizes correlated

sequential equilibria. In addition, an extension is considered in Section 1.3.3. Finally,

Section 1.4 concludes.

1.2 Setup

Time is indexed by t = 0; 1; � � �. There are an agent and a principal who are both risk
neutral. From time to time, I refer to the agent as he and the principal as she. The

principal has access to a project demanding the agent�s e¤ort as input. Given the

agent�s e¤ort in period t denoted by et 2 E := f0; 1g, his output in period t denoted
by �t 2 � := f�L; �Hg with �L < �H is drawn from a time-invariant distribution

�(�t = �H j et) =
(
q

p

, if

, if

et = 0

et = 1
with 0 < q < p < 1. (1)

[9]See Mailath and Morris (2002) for more information on a related problem.
[10]For the agent�s point of view, the monitoring is public because he does not receive any private
signal.
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Shirking et = 0 is costless, but exerting e¤ort et = 1 causes a �xed cost c > 0 so that

�(et) =

(
0

c

, if

, if

et = 0

et = 1

is the agent�s cost function of e¤ort. Assume

(1� q)�L + q�H < (1� p)�L + p�H � c (2)

which implies that the agent�s e¤ort is productive. The agent maximizes

(1� �)E�

" 1X
t=�

�t�� (wt � �(et))

#

and the principal maximizes

(1� �)E�

" 1X
t=�

�t�� (�t � wt)

#

where � 2 (0; 1) is the common discount factor, and wt 2 R is the principal�s transfer
to the agent in period t[11].

The agent�s e¤ort is unobservable to the principal. Due to (1), the principal is

unable to infer with certainty whether the agent shirks or exerts e¤ort from his output.

In addition, the agent�s output is privately observed by the principal.

In each period, the agent either shirks or exerts e¤ort, then the principal reports

(truthfully or not) the output. Hence, the agent�s action set is E and the principal�s

action set is �2. The principal�s action (#; #0) 2 �2 implies that she reports # (#0)
when the true output is �L (�H).

At the beginning of period t, the history of reported outputs #t := (#0; � � �; #t�1) 2
�t is public information. Besides that, the agent has his private history of e¤orts

et := (e0; � � �; et�1) 2 Et and the principal has her private history of true outputs

�t := (�0; � � �; �t�1) 2 �t. Therefore, the agent�s complete history is (#t; et) and the

principal�s complete history is (#t; �t).

A contract is a mapping

w :
1
[
t=0
�t ! R2

as a transfer schedule contingent on public histories. Any contract is enforceable by

a third party[12]. Denote the set of possible contracts by W . The agent�s behavioral

[11]If wt < 0, the transfer goes from the agent to the principal.
[12]Any contract I construct in this paper is self-enforcing. But it is easier to start with this
assumption.
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e¤ort strategy is a mapping

e :
1
[
t=0

�
�t � Et

�
! �(E)

and the principal�s behavioral report strategy is a mapping

r :
1
[
t=0

�
�t ��t

�
! (��)2[13].

Denote the set of the agent�s possible strategies by SA and the set of the principal�s

possible strategies by SP . Hence, a strategy pro�le is denoted by s := (e; r) 2 S :=

SA � SP .

Denote ! j #t 2 W as the continuation contract following public history #t,

e j (#t; et) 2 SA as the agent�s continuation strategy following his history (#t; et)

and r j (#t; �t) 2 SP as the principal�s continuation strategy following her history

(#t; �t). Denote w[#t](#t) as the transfer in period t contingent on reported output

#t following public history #
t, e[#t; et](et) as the probability of the agent with history

(#t; et) exerting e¤ort et[14] in period t, and r[#
t; �t; �t](#t) as the probability of the

principal with history (#t; �t) reporting #t in period t when observing true output �t.

Denote UA(s; !) and UP (s; !) as the normalized expected discounted (NED there-

after) payo¤s for the agent and the principal respectively given (continuation) strategy

pro�le s and (continuation) contract !.

Given strategy pro�le s, denote '[#t; et; s](�t) 2 [0; 1] as the probability assigned
by the agent with history (#t; et) to the principal having private history �t (or having

complete history (#t; �t)) and �[#t; �t; s](et) 2 [0; 1] as the probability assigned by

the principal with history (#t; �t) to the agent having private history et (or having

complete history (#t; et)). Apparently,X
�t
'[#t; et; s](�t) = 1 and

X
et
�[#t; �t; s](et) = 1.

Furthermore, at the beginning of period 0,

'[#0; e0; s](�0) = 1 and �[#0; �0; s](e0) = 1

where #0, e0 and �0 are empty sets[15]. The agent�s and principal�s beliefs evolve as

[13]Or equivalently, �(�2).
[14]Exerting e¤ort 0 means shirking.
[15]In Section 3.2, I assume that at the beginning of peroid 0, Nature draws the initial states for
the agent and the principal respectively so that each party holds a non-degenerate belief about what
the other�s initial state is.
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follows,

'[#t+1; et+1; s](�t+1) =
'[#t; et; s](�t)r[#t; �t; �t](#t)�(�t j et)X
�
t+1 '[#

t; et; s](�
t
)r[#t; �

t
; �t](#t)�(�t j et)

(3)

�[#t+1; �t+1; s](et+1) =
�[#t; �t; s](et)e[#t; et](et)�(�t j et)X
et+1

�[#t; �t; s](et)e[#t; et](et)�(�t j et)
(4)

respectively. However, the denominator in (3) may be zero (not necessarily) o¤ the

equilibrium path because the full support assumption is not satis�ed. For instance, if

the principal�s strategy is to report low output �L regardless of true output �t, then

reported output #t = �H as a public signal occurs with probability zero. If (3) is not

well-de�ned for some (#t+1; et+1), then I de�ne

'[#t+1; et+1; s](�t+1) =
tY

�=0

�(�� j e� ) (5)

instead. In addition, following (#t+1; et+1), the agent�s belief is de�ned by (5) as

well. In words, as long as the agent detects that the principal has deviated from her

strategy r, his belief becomes independent of the principal�s reports thereafter. Given

any strategy pro�le s, �[#t+1; �t+1; s](et+1) is well-de�ned even o¤the equilibrium path

due to (1), which implies that the agent�s potential deviations are undetectable to the

principal. It can be shown that ((e; r); ('; �)) is consistent, as de�ned in Fudenberg

and Tirole (1991).

De�nition 1.1 A strategy pro�le (e; r) is a sequential equilibrium (SE) with respect

to w if

e j (#t; et) 2 argmax
e02SA

nX
�t
'[#t; et; s](�t)UA((e0; r j (#t; �t)); w j #t)

o
8#t; et, (6)

r j (#t; �t) 2 argmax
r02SP

nX
et
�[#t; �t; s](et)UP ((e j (#t; et); r0); w j #t)

o
8#t; �t, (7)

while ('; �) is de�ned by (3)-(5).

1.3 Analysis

The agent�s e¤ort a¤ects the likelihood of the principal observing low (high) output �L
(�H) so that it can be used to infer whether the principal is being truthful or not. For

instance, when the principal reports low output �L, the agent should assign a higher

probability to the principal being truthful if he shirked, than if he exerted e¤ort due to

1�q > 1�p. Therefore, the agent�s private history of e¤orts et is expected to play an
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active role in providing incentives for the principal to be truthful. However, when the

agent uses a pure strategy as in Fuchs (2007), a payo¤-equivalence exists between a

sequential equilibrium and a weak perfect Bayesian equilibrium (WPBE)[16] in which

the agent is restricted to public strategies, as shown in Proposition 1.1. Thus, the

agent�s private history is not necessarily e¤ective as an incentive device. The reason

is that when the agent uses a pure strategy, his private history is not really "private"

in the sense that the principal�s belief about it is degenerate.

Proposition 1.1 Suppose that the agent uses a pure strategy. Given contract w,
denote VSE(w) as the set of SE payo¤ pairs, V 1

WPBE(w) as the set of WPBE payo¤

pairs, and V 2
WPBE(w) as the set of payo¤ pairs attainable by WPBE in which the agent

is restricted to public strategies. Then

VSE(w) = V 1
WPBE(w) = V 2

WPBE(w).

Proof. See Appendix 1.5.1.
I have VSE(w) � V 1

WPBE(w) because SE is a re�nement of WPBE and VSE(w) �
V 1
WPBE(w) if the full support assumption is satis�ed, which implies that each party�s

potential deviations are undetectable to the other. However, that is not the case in

this paper so that I have to deal with beliefs o¤ the equilibrium path with caution.

Notice that �t has the full support on �t regardless of the agent�s strategy due

to q; p 2 (0; 1). So whether the principal�s history (#t; �t) is on the equilibrium path

depends exclusively on her own strategy in the �rst t periods. Given public history

#t, if (#t; �t) 8�t is o¤ the equilibrium path, then (#t; et) 8et is o¤ the equilibrium
path too because otherwise there must exist �t such that (#t; �t) is on the equilibrium

path. In this case, I can rede�ne the agent�s continuation strategy as shirking and

the principal�s continuation strategy as minimizing the NED transfer with respect to

! j #t[17]. This is a SE with respect to ! j #t which generates the minmax NED
payo¤s for the agent and the principal respectively. Therefore, neither party has

incentives to deviate from his/her original strategy to put some weights on his/her

minmax payo¤ with respect to ! j #t. Actually, the agent is unable to bring #t back
on the equilibrium path because the principal�s strategy in the �rst t periods is the

same. If (#t; �t) is on the equilibrium path for some �t, the common argument applies

because beliefs are well de�ned by (3) and (4). So each party is able to change his/her

strategy o¤ the equilibrium path without interfering the other�s incentives on/o¤ the

[16]See Mas-colell, Whinston and Green (1995) for the formal de�nition of weak perfect Bayesian
equilibrium.
[17]Or simply, reporting low output �L regardless of real output �t if ! j #t is static with wL � wH .
See De�nition 2 for the formal de�nition of static contract.
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equilibrium path. Recursively applying the procedure described from period 1 gives

a payo¤-equivalent SE.

Regarding the second relation, it su¢ ces to show V 1
WPBE(w) � V 2

WPBE(w). Notice

that the principal with history (#t; �t) on the equilibrium path[18] assigns probability

one to the agent having private history et de�ned recursively as e0 = e(;) and

e�+1 = e((#0; � � �; #� ); (e0; � � �; e� )) 8� = 0; � � �; t� 2 (8)

where e is a deterministic function because the agent uses a pure strategy. Then

(#t; et) 8et 6= et is o¤ the equilibrium path. So we can replace e j (#t; et) 8et 6= et

with e j (#t; et) because WPBE does not impose any restrictions on beliefs o¤ the
equilibrium path[19]. Recursively applying the procedure described from period 1

gives a payo¤-equivalent WPBE in which the agent is restricted to public strategies.

Therefore, even the agent�s strategy in a SE is most likely to depend on his pri-

vate history et because di¤erent private histories give him di¤erent beliefs, therefore

di¤erent optimal continuation strategies. Proposition 1.1 suggests that the agent�s

private history of e¤orts is not e¤ective in providing incentives for the principal to be

truthful. The reason is that when the agent uses a pure strategy, his private history

is not really "private" in the sense that the principal has a degenerate belief about it

as shown above. So the principal only cares about the agent�s continuation strategy

following the single private history she believes of the agent having. Furthermore,

because the principal�s belief is independent of the history of true outputs in (8), she

reports truthfully only if she is indeed indi¤erent between reporting low output �L
and reporting high output �H as in Fuchs (2007). Moreover, I show in Section 3.2

that the agent�s use of mixed strategies is able to make the principal strictly prefer

reporting truthfully.

Proposition 1.2 Suppose that (e; r) is a SE with respect to w. Then, there exists a
payo¤-equivalent SE (e0; r0) with respect to w0 such that w0[#t](#t = �L) � w0[#t](#t =

�H) 8#t.

Proof. See Appendix 1.5.2.
By treating �L and �H as two public signals the principal has access to, Proposition

1.2 shows that without loss of generality, I can de�ne either one as the one associated

with the bonus throughout the contract. Again, I have to be careful about the agent�s

[18]If (#t; �t) 8�t is o¤ the equilibrium path, the same procedure as described above applies. Notice
that it is a public strategy for the agent to shirk under any circumstances.
[19]I can just assume that the agent with history (#t; et) 8et 6= et has the same belief on the
principal�s private history, as the agent with history (#t; et):
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beliefs o¤ the equilibrium path de�ned by (5) instead of (3). Fortunately, (5) is robust

to the nominal change because it is independent of #t+1.

In Section 3.1, I solve for the optimal perfect public equilibria with and without

imposing the constraint that the principal reports truthfully, in which the agent�s

private history of e¤orts is not used as an incentive device.

1.3.1 Perfect Public Equilibria

Following Fudenberg, Levine and Maskin (1994), I say the agent�s strategy e is public

if it depends on public history #t but not on his private history et, and the principal�s

strategy r is public if it depends on public history #t but not on her private history

�t. A perfect public equilibrium (PPE) is a SE in which both e and r are public.

De�nition 1.2 A contract w is static if w[#t](#t) is independent of #t.

Given static contract w = (wL; wH) 2 R2, denote V (w) as the set of feasible payo¤
pairs. Without loss of generality, assume wL � wH according to Proposition 1.2. The

agent�s minmax payo¤ is de�ned by

min
r2[0;1]

max
2e2f0;1g

"
e

1� e

#T "
p 1� p

q 1� q

#"
rH 1� rH

rL 1� rL

#"
wH

wL

#
� ec

and the principal�s minmax payo¤ is de�ned by

min
e2[0;1]

max
r2f0;1g2

"
e

1� e

#T "
p 1� p

q 1� q

# "
�H

�L

#
+

"
rH 1� rH

rL 1� rL

#"
�wH
�wL

#!

where e 2 [0; 1] is the probability of the agent exerting e¤ort, and r = (rL; rH) 2 [0; 1]2

are the probabilities of the principal reporting high output �H when true output �t
is low and high respectively. If r = (0; 1), then the principal reports truthfully.

Therefore, the minmax payo¤s for the agent and the principal are wL and � � wL

respectively. Denote

V �(w) := f(UA; UP ) 2 V (w) j UA � wL and UP � � � wLg

as the set of individually rational payo¤ pairs. Moreover, UA+UP is used to measure

e¢ ciency because both parties are risk neutral.
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De�ne a mapping � : 2R
2 ! 2R

2
as

�(X) =

8>>>>>>>>>>><>>>>>>>>>>>:
(UA; UP )

�����������������

9UL; UH 2 co(X)[20], e 2 [0; 1] and r 2 [0; 1]2

such that

UA = UA((e; r); w;UL; UH)

UP = UP ((e; r); w;UL; UH)

e 2 argmax
e02[0;1]

UA((e0; r); w;UL; UH)

r 2 argmax
r02[0;1]2

UP ((e; r0); w;UL; UH)

9>>>>>>>>>>>=>>>>>>>>>>>;
(9)

where

UA((e; r); w;UL; UH)

=

"
e

1� e

#| "
p 1� p

q 1� q

#"
rH 1� rH

rL 1� rL

#"
(1� �)wH + �UAH
(1� �)wL + �UAL

#
� e(1� �)c

UP ((e; r); w;UL; UH)

=

"
e

1� e

#| "
p 1� p

q 1� q

# "
(1� �)�H

(1� �)�L

#
+

"
rH 1� rH

rL 1� rL

#"
�(1� �)wH + �UPH
�(1� �)wL + �UPL

#!

so that �1(V (w)) is the set of PPE (with respect to w) payo¤ pairs according to

Abreu, Pearce and Stacchetti (1991).

I derive an upper bound on the total payo¤ attainable by PPE in Proposition 1.3,

then prove that it is the least upper bound by constructing the optimal PPE which

attains it in Theorem 1.1.

Condition 1 (p� q)2(�H � �L) � (1� q)c[21].

Proposition 1.3 Given a static contract w, denote

U(w) = maxUA + UP s.t. (UA; UP ) 2 �1(V (w))

as the maximum total payo¤ attainable by PPE with respect to static contract w.

Then,

U(w)

8><>:
= � , for � 2

�
0; �(w)

�
� � � 1�q

p�qc , for � 2
�
�(w); 1

�
[20]co(X) is the convex hull of X which implies that there exists a public randomization device.
However, it is not needed to construct the optimal PPE in Theorem 1.
[21]In Proposition 3 and Proposition 4, I prove that if this condition is violated, there does not exist
any PPE with respect to any contract in which the agent ever exerts e¤ort.
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where

�(w) =
max fc; (p� q)(wH � wL)g

max fc; (p� q)(wH � wL)g+ (p� q)2(�H � �L)� (1� q)c
2 [0; 1].

Proof. See Appendix 1.5.3.
Given static contract w, the blue parallelogram in Figure 1.1a represents V the

set of feasible payo¤ pairs. And the shadowed area represents �1(V ) the set of PPE

(with respect to w) payo¤pairs including (wL; ��wL) because the agent shirks and the
principal reports low output �L regardless of true output �t is a Nash equilibrium in the

stage game. I generalize the method of Radner, Myerson and Maskin (1986) (RMM

thereafter) by considering the fact that any continuation payo¤ pair must Pareto

dominate the minmax payo¤ pair (wL; � � wL). Hence, the upper bound derived is

not completely independent of the discount factor as in RMM. That is because the

minmax payo¤ pair imposes a bound on the feasible punishments, which is going to

bind if the discount factor becomes too small, or equivalently, the punishments needed

become too large.

)(V∞Γ

Uθ c−θLw

Lw−θ

AU

PU

)( cB −θ

)(wβ

LH ww −

1

qp
c
−

qcqp
c

LH +−− )()( 2 θθ

Shirking Zone
qcqp

c

LH +−− )()( 2 θθ

Slope =
))((

1

LHqp θθ −−

0

Figure 1.1a and 1.1b

In Figure 1.1b, the shirking zone is located between the blue curve of �(�) and
the horizontal axis where there does not exist any PPE with respect to any static

contract in which the agent ever exerts e¤ort. That is the case if either the discount

factor becomes too small, speci�cally less than c
(p�q)2(�H��L)+qc , or wH � wL becomes

too large. As a comparison, recall in the case of the agent�s output being publicly
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observable, the agent shirks if wH�wL is less than c
p�q and exerts e¤ort otherwise[22].

Therefore, larger wH �wL, higher incentives for the agent to exert e¤ort. But in this
model, the agent�s incentives to exert e¤ort depend on not only how large wH�wL is,
but also on how willing the principal is to be truthful. Unfortunately, the principal�s

willingness is negatively related to how large she can gain from lying which is also

wH � wL.

I construct the optimal PPE which attains the upper bound �� 1�q
p�qc for the largest

set of discount factor values
h

c
(p�q)2(�H��L)+qc ; 1

�
in Theorem 1.1. The optimal PPE

features a pure strategy for the agent, and a non-truth-reporting strategy for the

principal.

Theorem 1.1 (The optimal static contract) De�ne static contract w�as w�L = 0 and
w�H = �(p � q)(�H � �L). De�ne an automaton with two states: a cooperation state

C in which e = 1, rL = 1 � 1��
�

c
(p�q)2(�H��L)�(1�q)c , rH = 1, and a defection state D

in which e = 0, rL = rH = 0. Let C be the initial state. The transition from C to

D occurs if and only if low output �L is reported. But C is inaccessible to D which

implies that as far as D is reached, it prevails forever. Then, this is a PPE with respect

to w� which attains the total NED payo¤ � � 1�q
p�qc[23] for � 2

h
c

(p�q)2(�H��L)+qc ; 1
�
.

Proof. See Appendix 1.5.4.

The Defection StateThe Cooperation State

1=e
)1,0[∈Lr

1=Hr

0=e
0=Lr
0=Hr

L=ϑ

HL,=ϑH=ϑ

Figure 1.2

The defection state features the Nash equilibrium in the stage game. At the

cooperation state, the principal is indi¤erent between reporting low output �L and

reporting high output �H . Hence, rL is chosen to be small enough so that the agent

has incentives to exert e¤ort, but not too small so that the unnecessary punishments

[22]The agent is indi¤erent between shirking and exerting e¤ort if wH � wL = c
p�q .

[23]As p goes to 1 which implies that shirking is detectable when real output �t is low, the �rst best
� � c is achieved.
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are triggered. As a result, the agent is also indi¤erent between shirking and exerting

e¤ort.

The green dashed interval with slope 1
(p�q)(�H��L) in Figure 1.1b represents the

optimal static contract characterized by w�H � w�L. It is interesting to observe that

when the discount factor is just slightly larger than c
(p�q)2(�H��L)+qc , the agent exerts

e¤ort even when w�H � w�L is strictly less than
c
p�q . On the contrary, if the agent�s

output is publicly observable, the agent never exerts e¤ort if wH � wL <
c
p�q . The

di¤erence is that when the agent�s output is publicly observable, the agent�s expected

payo¤ from shirking is (1� q)wL + qwH guaranteed. But in this model, the principal
can punish the agent even further by reporting low output �L regardless of true output

�t so that the agent�s expected payo¤ from shirking is wL instead. In some sense, the

principal is able to �re the agent[24]. Therefore, as long as the relationship is still

valuable to the agent in the sense that wH � wL is not too small, or speci�cally

(1� p)wL+ pwH > wL[25], the agent has incentives to exert e¤ort in order to stay in.

At the cooperation state, rL 2 [0; 1) and rH = 1 imply that high output �t = �H

is always rewarded, but low output �t = �L is not always punished. That is because

the role of reported low output #t = �L is two fold: it di¤erentiates the agent�s

output ex post in order to provide ex ante incentives. But it also serves as the

public signal upon which the agent and the principal can coordinate their future

actions, or speci�cally, their future mutual punishments as described at the defection

state. As far as the e¢ ciency is concerned, it is not optimal to trigger the mutual

punishments more frequently than necessary in terms of providing incentives for the

agent to exert e¤ort. Therefore, it is not surprising to observe that larger the discount

factor, larger the bias measured by rL because when the agent values his future

payo¤more, a smaller probability of triggering the punishments is enough to provide

incentives for the agent. As suggested by Prendergast (1999), this phenomenon is well

documented in empirical studies as leniency bias, which implies that an supervisor

tends to overstate an subordinate�s performance.

This re�ects the fact that the principal is unable to observe the agent�s e¤ort

directly. Otherwise, there is no e¢ ciency loss of threatening to punish the agent

as severely as possible because the punishments will not be mistakenly triggered.

Abreu, Milgrom and Pearce (1991) (AMP thereafter) further show that it is optimal

for the principal to observe the agent�s outputs for more than one period in order to

accumulate more information before rewarding or punishing the agent. For instance,

in the T -period review equilibrium replicated from Fuchs (2007) without referring

[24]This implies allowing the principal to be able to �re the agent explicitly in this model may not
be necessary.
[25]This requires wH � wL > c

p which is apparently weaker than wH � wL >
c

p�q .
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to termination, the principal reports high output �H regardless of true output �t for

the �rst T � 1 periods[26]. Hence, the agent receives a signal informative about the
principal�s action for every T periods. And the principal has incentives to keep T

as large as possible (T can go to in�nity as the discount factor goes to one). This

illustrates an informational disadvantage for the agent in the sense that the principal

observes true output �t informative about the agent�s e¤ort every period, but is able

to keep the agent from receiving information about her action frequently. In order

to focus on how the agent provides incentives for the principal, I impose the truth-

reporting constraint upon the principal. So the agent is the only party keeping private

information on the equilibrium path. This is also consistent with the common practice

of employee participation in the performance evaluation process by keeping employees

informed as documented in Cawley, Keeping and Levy (1998).

Also, notice that the agent uses a pure strategy in Theorem 1.1 so that his private

history of e¤orts is actually public, therefore not e¤ective in providing incentives for

the principal to be truthful according to Proposition 1.1. That suggests that making it

private therefore potentially e¤ective may impose restrictions on the agent�s strategies.

Unlike Macleod (2003) in which the agent�s self-evaluation, de�ned as a private signal

received, is private by assumption, keeping the agent�s self-evaluation de�ned as his

e¤ort private may come with a e¢ ciency loss.

Consider an example based on Theorem 1.1 to illustrate how the agent�s use of

mixed strategies is able to generate more information for the agent with a e¢ ciency

loss. Notice the agent at state C observes reported low (high) output #t = �L (�H)

with probability (1�p)(1�rL) (p+(1�p)rL). This can be the result of the principal�s
strategy being (rL; 1) as de�ned in Theorem 1.1 or (p + (1 � p)rL; p + (1 � p)rL) in

which the principal reports high output �H with probability p+ (1� p)rL regardless

of true output �t. If it is the latter, the agent�s optimal strategy is to shirk instead.

Therefore, the agent has incentives to �nd out by shirking randomly. If shirking seems

not to a¤ect the probability of the agent receiving reported high output #t = �H , it is

more likely that the principal�s strategy is the latter so that the agent should shirk.

Proposition 1.4 Allowing dynamic contracting does not increase the maximum total
NED payo¤ attainable by PPE.

Proof. See Appendix 1.5.5.
Proposition 1.4 generalizes the static contract result of Levin (2003) without im-

posing the constraint that the principal reports truthfully[27]. It turns out to be easier

[26]See Section 3.3 for details.
[27]But the role of dynamic contracting is unclear when it comes to SE with the agent�s mixed
strategies. See Fuchs (2007) for a static contract result with the agent�s pure strategies.
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to derive the set of PPE payo¤ pairs with respect to some dynamic contract directly,

instead of the set of PPE payo¤pairs with respect to a certain dynamic contract. The

way to do that is to imagine that there exists a third player called contract generator,

for instance, besides the agent and the principal. The contract generator�s action set

is R2. And its strategy is a mapping

w :
1
[
t=0
�t ! R2.

As a result, the set of PPE payo¤pairs is characterized as an area between two parallel

lines because if (UA; UP ) is in it, then any (eUA; eUP ) with eUA + eUP = UA + UP is in

it too. All we have to do is to add a constant transfer without interfering incentives

for the agent and the principal.

De�nition 1.3 The principal�s report strategy features truth-reporting if the principal
reports truthfully as long as no false reports have been made previously.

It is not necessary to be speci�c about the principal�s strategy o¤ the equilibrium

path, because given the principal�s strategy on the equilibrium path as de�ned above,

the agent never assigns positive probability to the principal being o¤ the equilibrium

path due to p; q 2 (0; 1).

Lemma 1.1 Suppose that (e; r) is a SE with respect to static contract w = (0; wH).
If the principal�s report strategy features truth-reporting, then wH = 0 or c

p�q .

Proof. See Appendix 1.5.6.
The intuition is simple. If the principal�s strategy features truth-reporting, then

the agent expects to observe any public history with positive probability. So no

matter what the agent�s history is, he believes with certainty that the principal is on

the equilibrium path, therefore is going to be truthful in the future. Given that, if

wH is strictly less (greater) than c
p�q , then the agent has a strictly dominant strategy

of shirking (exerting e¤ort). In either case, the principal does not have incentives

to report high output �H as long as it is costly with wH > 0, because the agent�s

continuation strategy is independent of her report. For notational simpli�cation, let

w�� =
�
0; c

p�q

�
which is the only static contract I have to consider, when it comes to

SE in which the principal reports truthfully.

Because the e¢ ciency is exclusively determined by the agent�s e¤ort, it is equiva-

lent to focus on the NED probability of the agent exerting e¤ort de�ned as

e = (1� �)E0

" 1X
t=0

�tet

����� s
#
2 [0; 1] (10)
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instead of the total NED payo¤. For instance, the total NED payo¤�� 1�q
p�qc attainable

by the optimal PPE is equivalent to the NED probability of the agent exerting e¤ort
(p�q)2(�H��L)�(1�q)c
(p�q)[(p�q)(�H��L)�c] . Furthermore, de�ne

C �

8><>:e 2 [0; 1]
�������
9a PPE (e; r) with respect to w��

such that

(10) and r features truth-reporting

9>=>; (11)

as the set of NED probabilities of the agent exerting e¤ort in PPE with respect to

w�� in which the principal�s strategy features truth-reporting.

Theorem 1.2 C is empty for � 2
�
0; c

(p�q)2(�H��L)

�
[28]. Otherwise,

C =
�

qc

(p� q)[(p� q)(�H � �L)� c]
;
(p� q)2(�H � �L)� (1� q)c

(p� q)[(p� q)(�H � �L)� c]

�
.

Furthermore, there exist eL and eH with eL < eH such that

e(#t+1) =

(
eL , if #t = �L

eH , if #t = �H
8#t+1.

Proof. See Appendix 1.5.7.
In the optimal perfect public equilibrium, I have

eL = 1�
1

�

c

(p� q)2(�H � �L)
and eH = 1.

After observing true output �t, the principal with history (#
t; �t+1) has to decide

whether it is optimal to choose the NED payo¤ following ((#t; #t = �H); �
t+1) over the

one following ((#t; #t = �L); �
t+1) by reporting high output �H for the cost w�H � w�L.

When it comes to PPE in which the agent uses public strategies, the history of

true outputs �t+1 can be ignored by the principal. I have a similar situation as in

Proposition 1.1 so that the principal has to be indi¤erent between reporting low

output �L and reporting high output �H . In some sense, the agent is supposed to

"reimburse" the principal for the cost w�H � w�L by promising to exert more e¤ort

following reported high output �H . Because both the agent and the principal are risk

neutral, a �rst order Markov strategy as described in Theorem 1.2 can do the trick.

And, the agent�s tit-for-tat strategy as described above is consistent with empirical

studies, e.g. Greenberg (1986), which show that an employee is more likely to regard

[28]This requires (p� q)2(�H � �L) � c which is stronger than Condition 1. Otherwise, C is empty
regardless of the discount factor.
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a positive evaluation as being fair than a negative one.

As shown in Figure 1.3, requiring the principal to be truthful does not lower the

maximum NED probability of the agent exerting e¤ort attainable, but it does increase

the threshold on the discount factor value from c
(p�q)2(�H��L)+qc to

c
(p�q)2(�H��L) so that

the punishments needed are not too large to be feasible. This can be treated as a

direct e¢ ciency loss from requiring the principal to reveal her private information to

the agent.

cqpqp
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LH
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c
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LH )()()( 2 −−−− θθ

C

Figure 1.3

In Section 3.2 below, I deviate from the benchmark in Theorem 1.2 by assuming

that the agent�s strategy is private, which depends on the reported output and his

e¤ort in the prior period. In this environment, the necessary conditions are char-

acterized under which the agent�s e¤ort in the prior period is e¤ective in providing

incentives for the principal to be truthful. Then, I identify analytically and mea-

sure numerically the potential e¢ ciency loss and gain. Moreover, the agent�s optimal

strategy is characterized.

1.3.2 Correlated Sequential Equilibria

In this section, I consider private equilibria in which each player�s strategy can depend

on one�s private information, in addition to the public information. Following Phelan

and Skrzypacz (2008), I con�ne my attention to a speci�c type of private equilib-

rium, called correlated sequential equilibrium, in which each player�s strategy can be

represented as a �nite state automaton, and the initial states are drawn from a joint

distribution at the beginning of the game.

Speci�cally, I assume that the probability of the agent exerting e¤ort in period

t + 1 is determined by his history in period t, or equivalently, reported output #t
and his e¤ort et. Hence, the agent�s strategy can be represented as an automaton
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consisting of a set of states

� = �� E = f(L; 0); (L; 1); (H; 0); (H; 1)g,

an e¤ort function

e : �! [0; 1],

where e(
) is the probability of the agent exerting e¤ort at state 
 2 �, and a

transition function � : ���� E ! � de�ned as

�(
; #; e) = (#; e),

which implies that the agent�s state switches to (#; e) in period t + 1 if and only if

his history in period t is (#; e), regardless of his state in period t. For notational

simplicity, I refer to e(
) as e
 thereafter.

In addition, the principal reports the agent�s output truthfully in each period.

Therefore, the principal�s strategy can be represented as an automaton consisting of

a set of states

� = � = fL;Hg,

a report function r : ���! � de�ned as

r(�; �) = �[29],

and a transition function & : �����! � de�ned as

&(�; #; �) = #,

which implies that the principal�s state switches to # in period t+1 if and only if she

reports # in period t, regardless of her state in period t. Notice that the principal�s

strategy is static in the sense that the report function is independent of her state.

Therefore, the certain automaton representation is chosen for technical reasons, which

is in no way unique.

At the beginning of period 0, Nature draws the initial states for the agent and

principal respectively according to a joint distribution,

(L; 0) (L; 1) (H; 0) (H; 1)

L �L;0 �L;1 0 0

H 0 0 �H;0 �H;1

[29]This implies that the principal always reports truthfully even o¤ the equilibrium path.
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which is common knowledge. Assume �L;0 + �L;1 6= 0 and �H;0 + �H;1 6= 0. The joint
distribution does not have the full support, which is consistent with the fact that, in

period t + 1, the principal at state � assigns probability zero to the agent being at

state (�0; 0) and (�0; 1) with �0 6= �. The reason is that the principal is at state � in

period t + 1 if and only if she reported � in period t, which implies that the agent�s

history in period t (or equivalently, the agent�s state in period t + 1) is either (�; 0)

or (�; 1).

The optimal perfect public equilibrium in Theorem 1.2 can be replicated by letting

eL;0 = eL;1 = 1�
1

�

c

(p� q)2(�H � �L)
and eH;0 = eH;1 = 1

�L;0 = �L;1 = �H;0 = 0 and �H;1 = 1.

According to Lemma 1, without loss of generality, the contract is de�ned as w�� =�
0; c

p�q

�
. Given contract w�� and the principal�s truth-reporting strategy as de�ned

above, the agent is always indi¤erent between shirking and exerting e¤ort. As a

result, any e¤ort function e : � ! [0; 1] is optimal for the agent. Therefore, I focus

on the following question: given the agent�s e¤ort function e, does the principal have

incentives to be truthful? If the answer is positive, I say that e supports truth-

reporting.

I start with de�ning how the principal�s beliefs evolve. Because the agent�s contin-

uation strategy is exclusively determined by his state, the principal�s relevant belief is

about the agent�s state 
 2 �, instead of the agent�s private history et 2 Et. Speci�-
cally, the principal�s belief at state � 2 � is about whether the agent is at state (�; 0)
or (�; 1), or equivalently, whether the agent has exerted e¤ort in previous period (if

there is one).

If the principal at state � assigns probability x 2 [0; 1] to the agent being at state
(�; 1) in period t, she expects the agent to exert e¤ort with probability

e(x;�) = (1� x)e�;0 + xe�;1 2 [0; 1] (12)

before observing true output �t. However, after observing true output �t to be low

and high, the principal assigns probabilities

F (x; L;�) =
e(x;�)(1� p)

(1� e(x;�))(1� q) + e(x;�)(1� p)
2 [0; 1] (13)

F (x;H;�) =
e(x;�)p

(1� e(x;�))q + e(x;�)p
2 [0; 1] (14)

to the agent having exerted e¤ort in period t respectively. Notice that (13) and (14)
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are well-de�ned due to q; p 2 (0; 1).
For all � 2 �, denote N(�) � [0; 1] as the set of possible probabilities assigned by

the principal at state � to the agent being at state (�; 1), before observing the true

output in current period. Hence, x 2 N(�) if and only if x = ��;1
��;0+��;1

, or there exist

initial state �0 2 � and history (#t+1; �t+1) for the principal such that

#t = � and x =
X

et+12Et+1 with et=1

�[�0;#
t+1; �t+1](et+1),

which imply that if the principal starts with �0, then following (#
t+1; �t+1), she is at

state � in period t+1, and assigns probability x to the agent having exerted e¤ort in

period t, or equivalently, being at state (�; 1) in period t+ 1.

Following Phelan and Skrzypacz (2008), I construct N(�) by de�ning Nt(�) recur-
sively with

N(�) =
1
[
t=0
Nt(�) 8� 2 � (15)

as follows: if the principal is at state � in period 0, then she assigns probability
��;1

��;0+��;1
to the agent being at state (�; 1) such that

N0(�) =
�

��;1
��;0 + ��;1

�
. (16)

Furthermore, Nt+1(�) is de�ned recursively as

Nt+1(�)=�(Nt(L);Nt(H);�)

=

8><>:x 2 [0; 1]
�������

9�0 2 � and (#; �) 2 �2

such that

# = � and x = F (x0; �;�0) for some x0 2 Nt(�0)

9>=>; (17)
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where � : 2[0;1]� 2[0;1]��! 2[0;1] is a mapping. The idea is illustrated in Figure 1.4,
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Figure 1.4

in which N1(L) = N1(H) = fA;B;C;Dg. It is no coincidence to have N1(L) = N1(H),
which will be generalized for t + 1 by (a) in Proposition 1.8. The idea is that the

principal�s belief about whether the agent has shirked or exerted e¤ort in period 0

is independent of reported output #0, because it occurs after the agent makes his

e¤ort decision. However, the principal�s state in period 1 is exclusively determined

by #0. For instance, if the principal�s initial state is L, then she assigns probability

A = F
�

�L;1
�L;0+�L;1

; �0 = L;L
�
to the agent having exerted e¤ort, after observing true

output �0 to be low. Then, A 2 N1(L) if #0 = L and A 2 N1(H) if #0 = H. The

di¤erence is that A 2 N1(L) is a belief on the equilibrium path, while A 2 N1(H) is
a belief o¤ the equilibrium path because the principal misreported.

Furthermore, for all 
 2 �, denote e
 2 [0; 1] as the NED probability of the agent
exerting e¤ort, given the agent�s continuation strategy at state 
 and the principal�s

truth-reporting strategy. Hence, given that the agent�s starting state is 
, e
 measures

how much e¤ort (on average) the principal expects the agent to exert in the future

by reporting truthfully. Formally,

e � (1� �)e+ �Ze (18)

where

e � (eL;0 eL;1 eH;0 eH;1)>

e � (eL;0 eL;1 eH;0 eH;1)>
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and

Z �

266664
(1� eL;0)(1� q) eL;0(1� p) (1� eL;0)q eL;0p

(1� eL;1)(1� q) eL;1(1� p) (1� eL;1)q eL;1p

(1� eH;0)(1� q) eH;0(1� p) (1� eH;0)q eH;0p

(1� eH;1)(1� q) eH;1(1� p) (1� eH;1)q eH;1p

377775
is the transition matrix. By algebra, I have

e
 =
e0

1� (e1 � e0)
+

1� �

1� �(e1 � e0)

�
e
 �

e0
1� (e1 � e0)

�
8
 2 � (19)

where e0 = (1� q)eL;0 + qeH;0 and e1 = (1� p)eL;1 + peH;1[30]. In addition, e0
1�(e1�e0)

is the long term average independent of the agent�s starting state, and 1��
1��(e1�e0)

measures how much the agent�s starting state matters, which goes to zero as the

discount factor goes to one.

Lemma 1.2 An e¤ort function e : � ! [0; 1] supports truth-reporting if and only if

for all � 2 � and x 2 N(�),

(1� F (x; L;�))(eH;0 � eL;0) + F (x; L;�)(eH;1 � eL;1) � y (20)

(1� F (x;H;�))(eH;0 � eL;0) + F (x;H;�)(eH;1 � eL;1) � y (21)

where

y � 1� �

�

c

(p� q)[(p� q)(�H � �L)� c]
> 0[31].

Proof. See Appendix 1.5.8.
According to Theorem 12.2.2 in Mailath and Samuelson (2006), the one-shot devia-

tion principal applies. So, (20) and (21) are basically no pro�table one-shot deviations

conditions for the principal, given that the true output is low and high respectively.

Given that the agent has shirked (exerted e¤ort), the principal is able to increase

(on average) the probability of the agent exerting e¤ort in the future by eH;0 � eL;0
(eH;1 � eL;1), if she reports the high output for the cost c

p�q . However, the principal

does not know for sure whether the agent has shirked or exerted e¤ort. Instead,

she assigns probability F (x;L;�) (F (x;H;�)) to the agent having exerted e¤ort after

observing the true output to be low (high). Therefore, the left hand side of (20) ((21))

is how much more e¤ort (on average) the principal expects the agent to exert in the

future by reporting the high output in current period, given that the true output

[30]On the equilibrium path, e0 (e1) is the expected probability of the agent exerting e¤ort, given
that the agent shirks (exerts e¤ort) in previous period.
[31]Apparently, the left hand sides of (20) and (21) are between 0 and 1. Therefore, y 2 [0; 1] which
implies � � c

(p�q)[(p�q)(�H��L)�c]+c .
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is low (high). It is pro�table to report the high output if and only if the expected

increase, on the probability of the agent exerting e¤ort in the future, is greater than

y.
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Figure 1.5

If the principal perfectly predicts what the agent is going to do beforehand (e(x;�) =

0 or 1), then no matter what the true output turns out to be, she will not update

her prior belief due to q; p 2 (0; 1)[32]. This is what happens when the agent uses a
pure strategy as in Fuchs (2007) according to Proposition 1.1. But if the agent uses

a mixed strategy as in this paper, the true output carries useful information for the

principal to infer whether the agent has shirked or exerted e¤ort. As shown in Figure

1.5, F (x;L;�) and F (x;H;�) are not equal for e(x;�) 2 (0; 1).
Moreover, the principal is always less (more) convinced of the agent having exerted

e¤ort after observing the true output to be low (high), because F (x;L;�) (F (x;H;�))

is below (above) the 45 degree line. Furthermore, the convexity of F (x;L;�) and the

concavity of F (x;H;�) in e(x;�) imply that the principal relies more heavily on the

true output in current period to infer whether the agent has shirked or exerted e¤ort,

when her history (combined with the agent�s strategy) tells her less about what the

agent is going to do beforehand, in the sense that e(x;�) is away from 0 and 1.

Therefore, the distribution of e(x;�) on [0; 1] across the principal�s possible histories

measures how private the agent�s e¤orts are to the principal.

Proposition 1.5 Suppose that e is an e¤ort function supporting truth-reporting.

[32]If p = 1 and the principal believes with certainty that the agent is going to exert e¤ort beforehand,
then she knows she was wrong when the true output turns out to be low.
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Then,

eH;0 � eL;0 � eH;1 � eL;1 and eL;1 < eH;1.

Proof. See Appendix 1.5.9.
Intuitively, in order to have incentives to be truthful, the principal must be con-

vinced of being in the situation where it is in her best interest to be truthful. Because

the principal is less (more) convinced of the agent having exerted e¤ort after observ-

ing the true output to be low (high), she must prefer reporting the low (high) output

when the agent has shirked (exerted e¤ort). Hence, I have

eH;0 � eL;0 � y � eH;1 � eL;1. (22)

Then, Proposition 1.5 follows (19) immediately, which predicts that an employee who

has exerted more e¤ort is more sensitive to what one�s performance evaluation turns

out to be. Moreover, eL;1 < eH;1 is consistent with empirical studies such as Greenberg

(1986), who shows that an employee is more likely to regard a positive evaluation as

being fair than a negative one.

In order to further characterize the set of the principal�s beliefs, N(�), and conduct
the e¢ ciency analysis, I have to be speci�c about the starting condition �. Formally, I

de�ne � = �, where �> � (�L;0 �L;1 �H;0 �H;1)> is the stationary distribution de�ned
by

�> = �>Z. (23)

In words, Nature starts the game in the way like it has been going on forever. By

algebra, I have

� =

�
(1� q)(1� e1)

1� (e1 � e0)

(1� p)e0
1� (e1 � e0)

q(1� e1)

1� (e1 � e0)

pe0
1� (e1 � e0)

�
which implies that �>e = �>e = e0

1�(e1�e0) . Hence, the agent�s e¤ort functions are

ranked by e0
1�(e1�e0) . Intuitively,

e0
1�(e1�e0) is the unconditional probability of the agent

exerting e¤ort after the game has been going on for many periods, independent of the

agent�s initial state.

Proposition 1.6 below explores the possibility of providing incentives more e¢ -

ciently (in terms of e0
1�(e1�e0) attainable) for the principal to be truthful, without

having to deal with the principal�s beliefs explicitly. But the answer is negative.

Following Ely, Hörner and Olszewski (2005), I say e¤ort function e supporting

truth-reporting is belief-free if given e, the principal has incentives to be truthful

regardless of her belief. Hence, when I call e¤ort function e belief-free, it does not

refer to that the agent�s strategy is belief-free given the principal�s truth-reporting
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strategy, which is true according to Lemma 1. Instead, I refer to that given e, the

principal�s truth-reporting strategy is belief-free.

Suppose the principal believes with certainty of the agent having shirked. Then

she reports truthfully if and only if eH;0 � eL;0 = y due to (20) and (21). Suppose

the principal believes with certainty of the agent having exerted e¤ort. Then she

reports truthfully if and only if eH;1� eL;1 = y due to (20) and (21). So e supporting

truth-reporting is belief-free if and only if

eH;0 � eL;0 = y = eH;1 � eL;1

which does not necessarily imply that eL;0 = eL;1 and eH;0 = eH;1 as in perfect public

equilibria.

Proposition 1.6 Suppose that e� is the optimal belief-free e¤ort function supporting
truth-reporting. Then,

e�L;0 = e�L;1 = 1�
1

�

c

(p� q)2(�H � �L)
and e�H;0 = e�H;1 = 1

for � 2
h

c
(p�q)2(�H��L) ; 1

�
.

Proof. See Appendix 1.5.10.
Notice that e� is identical to the optimal perfect public equilibrium in Theorem

1.2, but with the di¤erent measure for the NED probability of the agent exerting

e¤ort
(p� q)2(�H � �L)� (1� q) c

�

(p� q)[(p� q)(�H � �L)� c
�
]
[33] (24)

which is smaller due to the di¤erent starting conditions. Speci�cally, the implicit

starting condition in Theorem 1.2 is (0 0 x 1 � x)> for some x 2 [0; 1], which is

di¤erent from �� in which the agent�s initial state can be (L; 0) and (L; 1). In order

to conduct the meaningful e¢ ciency analysis, I still use (24) to measure the NED

probability of the agent exerting e¤ort for e�[34]. More importantly, Proposition 1.6

suggests that in order to provide incentives more e¢ ciently for the principal to be

truthful, I have to consider belief-based e¤ort functions supporting truth-reporting

with eH;0 � eL;0 < eH;1 � eL;1 according to Proposition 1.5.
For a belief-based e¤ort function e supporting truth-reporting, (20) and (21) can

[33]As the discount factor goes to one, the di¤erence disappears.
[34]The starting condition does not a¤ect the principal�s incentives in belief-free equilibria, but it
does in belief-based equilibria I will consider later.
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be rewritten as

F (x; L;�) � F � F (x;H;�) 8� 2 � and x 2 N(�) (25)

with

F =
y � (eH;0 � eL;0)

(eH;1 � eL;1)� (eH;0 � eL;0)
(26)

due to eH;0 � eL;0 < eH;1 � eL;1. That implies that whenever the principal observes
the true output to be low (high), she assigns a probability lower (higher) than the

threshold value F to the agent having exerted e¤ort. Notice that if the principal is at

state �, and assigns probability x to the agent being at state (�; 1), then

F (x; L;�t) � e(x;�t) � F (x;H;�t).

Hence, (25) basically requires that the separation to be uniform across the principal�s

possible histories. Or, in words, no matter what happened in the past, the agent�s

output sends the "right" message for the principal about whether the agent has shirked

or exerted e¤ort. I show that the uniform separation property as described above

imposes a restriction on the agent�s e¤ort functions, which causes a non-negligible

e¢ ciency loss.

I �rst show in Proposition 1.7 below that the optimal belief-free e¤ort function e�

cannot be approximated by a sequence of belief-based e¤ort functions.

Proposition 1.7 There exists " > 0 such that no belief-based e¤ort function support-
ing truth-reporting belongs to the "-neighborhood of e� in the space [0; 1]4.

Proof. Appendix 1.5.11.
By treating each e¤ort function as a point in the space [0; 1]4, Proposition 1.7

suggests that e� is isolated from the set of belief-based e¤ort functions supporting

truth-reporting. As argued above, for each belief-based e¤ort function supporting

truth-reporting, there exists a threshold such that whenever the principal observes the

true output to be low (high), she is convinced of the agent having exerted e¤ort for

a probability less (greater) than that threshold. But given e�, the principal at state

H believes with certainty of the agent having exerted e¤ort, regardless of the true

output because e�H;0 = e�H;1 = 1. At the same time, the principal at state L believes of

the agent having exerted e¤ort for probability
e�L;0p

(1�e�L;0)q+e�L;0p
=

e�L;1p

(1�e�L;1)q+e�L;1p
< 1 even

after observing the true output to be high. Proposition 1.7 follows by realizing that

F is a continuous function.

Therefore, e� can not be approximated by a sequence of belief-based e¤ort func-

tions supporting truth-reporting. A related question considered by Mailath and Mor-
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ris (2002) is that under what conditions, a perfect public equilibrium in a repeated

game with public monitoring is a sequential equilibrium in an arbitrarily closed re-

peated game with private monitoring[35]. They require each player to strictly prefer

one�s action in the perfect public equilibrium than alternatives. Hence, as long as

the disturbance introduced is uniformly small enough, each player has incentives to

stick to one�s strategy in the perfect public equilibrium. Proposition 1.7 addresses a

di¤erent question which is that given the same repeated game with both public and

private monitoring, whether the optimal belief-free e¤ort function (it happens to be

public) can be approximated by a sequence of belief-based e¤ort functions supporting

truth-reporting. Notice that given e�, the principal is indi¤erent between reporting

the low and high outputs such that the principal�s truth-reporting strategy is not

robust to even an arbitrarily small disturbance.

Proposition 1.7 also has an important implication on the e¤ectiveness of numerical

algorithms. Notice the Borel measure of the set of belief-free e¤ort functions support-

ing truth-reporting is zero because eH;0 � eL;0 = y = eH;1 � eL;1, which implies that
the set is two-dimensional in the four-dimensional space [0; 1]4. Therefore, e�, the po-

tential optimal e¤ort function supporting truth-reporting, can not be approximated

by some common numerical algorithms. For instance, consider a common numerical

algorithm as follows: let the interval [0; 1] be discretized as � =
�
0
N
; 1
N
; � � �; N

N

	
where

N � 1 is an integer. For each e 2 �4, calculate N(�) by (16) and (17)[36]. Then I
check the principal�s incentives by (20) and (21). If e supports truth-reporting, calcu-

late e0
1�(e1�e0) . As N goes to in�nity, I expect the result generated by this numerical

algorithm to converge to the optimal e¤ort function supporting truth-reporting. But

if e� is optimal, which happens frequently in my computation, it is impossible to get

close to e� no matter how large N becomes.

Now I start to identify the e¢ ciency loss associated with belief-based e¤ort func-

tions. Given F 2 [0; 1], I have

e(x;�) 2
�

qF

p� (p� q)F
;

(1� q)F

(1� p) + (p� q)F

�
� 
(F) 8� 2 � and x 2 N(�) (27)

by (25), which implies that the principal expects the agent to exert e¤ort in current

period with a probability greater than qF
p�(p�q)F and less than

(1�q)F
(1�p)+(p�q)F under any

[35]In the sense that the probability of both players receiving the same private signal is arbitrarily
close to one.
[36]It is feasible because we just have to iterate on the two extreme points as shown by Phelan and
Skrzypacz (2008).
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circumstances. Therefore,

(1� F (x; �;�))e#;0 + F (x; �;�)e#;1 2 
(F) 8� 2 �, x 2 N(�) and #; � 2 �[37]

which implies that the principal expects the agent to exert e¤ort (on average) in

the future for a probability bounded by 
(F), regardless of her history, the reported

output and the true output. The reason is that by (17), F (x; �;�) 2 N(#) such that
the principal expects the agent to exert e¤ort for probability

(1� F (x; �;�))e#;0 + F (x; �;�)e#;1 2 
(F).

due to (27). This is also true in the following periods. However, (20) and (21) require

0 < y � (1� q)F

(1� p) + (p� q)F
� qF

p� (p� q)F
,

or equivalently,

(p� q)[1� (p� q)y]F2 + (p� q)[(2p� 1)y � 1]F+ p(1� p)y � 0. (28)

Otherwise, the principal does not have incentives to report the high output under any

circumstances. Furthermore, (28) implies F 2
�
F;F

�
with

�(p� q)[(2p� 1)y � 1]�
p
(p� q)2[(2p� 1)y � 1]2 � 4p(1� p)(p� q)[1� (p� q)y]y

2(p� q)[1� (p� q)y]

�(p� q)[(2p� 1)y � 1] +
p
(p� q)2[(2p� 1)y � 1]2 � 4p(1� p)(p� q)[1� (p� q)y]y

2(p� q)[1� (p� q)y]

as F and F respectively where

(p� q)2[(2p� 1)y � 1]2 � 4p(1� p)(p� q)[1� (p� q)y]y � 0[38]. (29)

The idea can be clearly illustrated in Figure 1.5. As F goes to 1, 
(F) becomes

smaller due to the convexity of F (x; L;�) and the concavity of F (x;H;�) in e(x;�).

So the potential impact of the principal�s reported output becomes smaller on the

NED probability of the agent exerting e¤ort in the future, as measured by the length

of 
(F). At some point, it becomes too small to be able to compensate the cost of

reporting the high output for the principal.

As a result, either eH;0 or eH;1 must be less than
(1�q)F

(1�p)+(p�q)F < 1, otherwise

[37]It does not necessarily imply e
 2 
(F) 8
.
[38]Otherwise, there exists no belief-based e¤ort function supporting truth-reporting.
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e(x;H) > (1�q)F
(1�p)+(p�q)F 8x 2 [0; 1] which contradicts (27). This features an e¢ ciency

loss when compared to e� with e�H;0 = e�H;1 = 1. To illustrate how large it can be,

consider an example with q = 0:3, p = 0:7, �L = 0, �H = 8, c = 1 and � = 0:85.

By calculation, I have (1�q)F
(1�p)+(p�q)F

:
= 0:94 which implies that the agent has to lower

the probability of exerting e¤ort at either state (H; 0) or state (H; 1) by at least 6

percents, which turns out to be a quiet underestimate when it comes to computation.

Proposition 1.8 Suppose � = �. Then,
(a) Nt+1(L) = Nt+1(H) � Nt+1;
(b) inf N(L) = inf N(H) = inf

1
[
t=1
Nt � x and supN(L) = supN(H) = sup

1
[
t=1
Nt �

x;

(c) in Lemma 2, it su¢ ces to check (20) and (21) 8� 2 � and x 2 fx; xg.

Proof. See Appendix 1.5.12.
(a) does not requires � = �. It follows the fact that given the principal�s history

(#t+1; �t+1), the principal�s belief is determined by (#t+1; �t) while her state in period

t+ 1 is determined by �t. And (b) follows (a) and the fact that the principal�s initial

belief
��;1

��;0+��;1
2 N0(�) will not be the extreme point due to � = �. The agent�s e¤ort

is more private, if x is more away from 0 and x is more away from 1. Finally, (c)

follows the convexity of F (x; L;�) and the concavity of F (x;H;�) in e(x;�).

Theorem 1.3 shows that hiding the agent�s e¤orts from the principal by mixed

strategies incurs a non-negligible e¢ ciency loss.

Theorem 1.3 There exists " > 0 such that if e is a belief-based e¤ort function sup-
porting truth-reporting, then the principal expects the agent to exert e¤ort for a prob-

ability less than 1� " regardless of her history. In addition,

� < x < x < 1� � for some � > 0.

Furthermore, if e is strictly more e¢ cient than e�, then

eL;0 > eL;1.

Proof. See Appendix 1.5.13.
The �rst result follows by setting " = 1 � (1�q)F

(1�p)+(p�q)F as shown above. It is a

non-negligible e¢ ciency loss in the sense that given the agent�s optimal belief-free

strategy, the principal expects the agent to exert e¤ort with probability one if the

reported output is high in the prior period. However, given any belief-based strategy

for the agent, the principal can never expect the agent to exert e¤ort for a probability

greater than 1� " under any circumstances.
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In addition, � < x < x < 1 � � implies that the agent�s e¤ort has to be private

enough in the sense that the principal is unable to infer it with certainty under any

circumstances. Otherwise, there exist a initial state and a sequence of one-period

histories f(#t; �t)g1t=0, along which the principal is going to be convinced at some
point, or eventually with certainty of the agent having shirked or exerted e¤ort.

If eL;0 < eL;1, the sequence of the principal�s beliefs along history f(#t = L; �t =

L)g1t=0 is monotonic and convergent. In other words, no matter what the principal�s
initial belief x0 is, she will be convinced eventually of the agent having exerted e¤ort for

probability x1, as shown in Figure 1.6a for the case x0 > x1. And if eH;0 < eH;1, the

sequence of the principal�s beliefs along history f(#t = H; �t = H)g1t=0 is monotonic
and convergent too, as shown in Figure 1.6b for the case x0 < x1.

1
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0,Le

1,Le

10

);,( HHxF 1,He

0,He

x
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Figure 1.6a and 1.6b

Furthermore, if eL;0 = 0, the principal is going to be convinced eventually with

certainty of the agent having shirked due to x1 = 0, and if eH;1 = 1, the principal

is going to be convinced eventually with certainty otherwise due to x1 = 1. No

matter the principal is convinced with certainty of one way or another, she reports

truthfully only if she is indeed indi¤erent between reporting the low and high outputs

as shown before. That is why it is important for the agent to keep his e¤ort private

under any circumstances, because the extreme beliefs across the principal�s possible

histories, x and x, determine the principal�s incentives to be truthful according to (c)

in Proposition 1.8.

To summarize, in a belief-based e¤ort function supporting truth-reporting, the

agent has to avoid punishing (rewarding) the principal to the full extent by shirking
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(exerting e¤ort) with certainty, as he does in the optimal belief-free (public) e¤ort

function. The reason is that by shirking (exerting e¤ort) with more certainty, the

agent makes his e¤ort more predictable by the principal, therefore less useful in pro-

viding incentives for the principal to be truthful.

Furthermore, Theorem 1.3 shows that the agent responds to the reported low

output more positively with eL;0 > eL;1, if he shirked. This is consistent with empir-

ical studies such as Greenberg who shows that an employee regards a performance

evaluation match his self-evaluation as being fair, and exerts more e¤ort in the future.

Proposition 1.9 below is devoted to measure how private the agent�s e¤ort is by

calculating x and x, given his e¤ort function.

Proposition 1.9 Suppose that e is an e¤ort function with

eL;0 � eL;1, eL;0 � eH;0 and eH;0 � eL;0 � eH;1 � eL;1.

Then, (a) x = F (x; L;L) and x = F (x;H;H) if eH;0 � eH;1;

(b) x = F (x; L;L) and x = F (x;H;H) if eH;0 � eH;1.

Proof. See Appendix 1.5.14.
The only restrictive assumption is eL;0 � eH;0, because eL;0 � eL;1 is necessary for

belief-based e¤ort functions supporting truth-reporting to be strictly more e¢ cient

than e� according to Theorem 1.3, and eH;0 � eL;0 � eH;1 � eL;1 follows Proposition

1.5. Moreover, eL;0 � eH;0 simply implies that no matter what the principal�s belief is,

she expects the agent to exert more e¤ort following the reported high output because

e(x;L) = eL;0 + (eL;1 � eL;0)x � eH;0 + (eH;1 � eH;0)x = e(x;L) 8x 2 [0; 1]

where eL;1�eL;0 � eH;1�eH;0 is implied by eH;0�eL;0 � eH;1�eL;1. It makes sense for
three reasons: �rst, the agent has to compensate the principal for reporting the high

output in general because it is costly for the principal; second, it is consistent with

empirical studies such as Greenberg (1986) who shows that an employee is more likely

to regard a positive evaluation as being fair than a negative one; third, it is a robust

feature of the optimal e¤ort function supporting truth-reporting in my numerical
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analysis.
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Figure 1.7a and 1.7b

The case (a) in Proposition 1.9 is illustrated in Figure 1.7a. After observing the

true output to be low, the principal assigns a probability ranging from F (x; L;L) to

F (x; L;H) to the agent having exerted e¤ort. And after observing the true output to

be high, the principal assigns a probability ranging from F (x;H;L) to F (x;H;H) to

the agent having exerted e¤ort. Therefore, e supports truth-reporting if

F (x; L;H) � F � F (x;H;L).

Suppose that the principal�s belief in period 0 is x0, which belongs to [x; x] due

to � = �. What is the history along which the principal is able to get more informa-

tion about the agent�s e¤ort as fast as possible, or equivalent, the principal�s belief

converges to x or x as fast as possible? The answer is

f(#t = L; �t = H); (#t+1 = H; �t+1 = L)g for t = 0; 2; ��

which features an oscillation o¤ the equilibrium path.

The case (b) in Proposition 1.9 is illustrated in Figure 1.7b. After observing the

true output to be low, the principal assigns a probability ranging from F (x; L;L) to

F (x; L;H) to the agent having exerted e¤ort. And after observing the true output to

be high, the principal assigns a probability ranging from F (x;H;L) to F (x;H;H) to
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the agent having exerted e¤ort. Therefore, e supports truth-reporting if

F (x; L;H) � F � F (x;H;L).

Suppose that the principal�s belief in period 0 is x0, which belongs to [x; x] due

to � = �. What is the history along which the principal is able to get more informa-

tion about the agent�s e¤ort as fast as possible, or equivalent, the principal�s belief

converges to x or x as fast as possible? The answer is

f(#t = H; �t = H)g1t=0

which features a monotonic convergence on the equilibrium path. However, in order

to reach x, I should add f(L;H); (L;L)g at the end of a very long sequence of (H;H).
Therefore, in some sense, e¤ort function e as in the case (a) reveal more information

to the principal who is engaging on misreporting. That is not consistent with our

goal of providing incentives more e¢ ciently for the principal to be truthful. Lemma

3 provides a partial result about why e¤ort function e, as in the case (a), is not likely

to be optimal. But the argument here provides an intuitive explanation.

De�ne

Q(�) � fx 2 [0; 1] j9� 2 � and x0 2 N(�) such that x = F (x0; �;�)g � [0; 1] 8� 2 �
(30)

as the set of possible probabilities assigned by the principal to the agent having exerted

e¤ort, after observing the true output to be �. Notice that Q(�) serves as a bridge
between the agent and the principal in the sense that it is determined by the agent�s

strategy, and at the same time, it determines whether the principal has incentives to

be truthful.

Apparently, (25) suggests that Q(L) is below and separable from Q(H) in the
space [0; 1]. Theorem 1.4 further shows that the distance between Q(L) and Q(H) is
zero in the optimal belief-based e¤ort function.

Theorem 1.4 Suppose that e+ is the optimal belief-based e¤ort function supporting
truth-reporting. If e+L;0 � e+H;0 and e

+ is strictly more e¢ cient than e�, then

supQ+(L) = F+ = inf Q+(H).

Proof. See Appendix 1.5.15.
It su¢ ces to prove F (x+; L;H) = F+ = F (x+; H;L) in case (a) and F (x+; L;H) =

F+ = F (x+; H;L) in case (b). The distance between Q+(L) and Q+(H) measures
how well the agent is able to keep his e¤ort private. The reason is that the principal
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relies heavily on the output in the current period to infer the agent�s e¤ort, only

because the agent has been successfully keeping the principal from inferring too much

from her history (along with the agent�s strategy) about what the agent is going to do

in the current period. Therefore, supQ+(L) < inf Q+(H) implies that the agent keeps
his e¤ort too private to be necessary in terms of providing incentives for the principal

to be truthful. Because keeping the agent�s e¤ort private involves the e¢ ciency loss,

it is not optimal to overdo it. Speci�cally, if supQ+(L) < inf Q+(H), the agent is able
to exert e¤ort with a slightly larger probability at each state, while still keeping his

e¤ort private enough in terms of providing incentives for the principal to be truthful.

E¤ort functions as case (b) have all the features consistent with empirical studies

on how employees respond to subjective performance evaluations. So Lemma 3 tries

to shed some light on why it is likely to be optimal, by showing that e+H;0 � e+H;1 is

likely to bind.

Lemma 1.3 Suppose e+L;0 � e+H;0, e
+
H;0 � e+H;1 and e

+ is strictly more e¢ cient than

e�. Then, if p(1 � q)2 � q2(1 � p)[39], one of the following statements must be true:

(a) e+L;0 = e+H;0; (b) e
+
L;1 = 0; (c) e

+
H;0 = e+H;1.

Proof. See Appendix 1.5.16.
Finally, I try to measure numerically the e¢ ciency outcome associated with the

agent�s belief-based e¤ort functions. Given q = 0:01, �L = 0, �H = 6, c = 2 and

� = 0:65, I have

e+L;0 e+L;1 e+H;0 e+H;1 �+>e+ ��>e� Productive (a) or (b)

p = :78 :113 :108 :976 :976 :361 :430 NO (b)

p = :80 :190 :117 :980 :981 :508 :532 NO (b)

p = :82 :249 :156 :982 :988 :613 :617 NO (b)

p = :84 :340 :139 :988 :988 :701 :688 YES (b)

p = :86 :421 :141 :990 :990 :768 :750 YES (b)

p = :88 :500 :147 :992 :992 :822 :802 YES (b)

[39]It can be easily satis�ed with q < 1
2 < p.
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Figure 1.8

in which the blue solid line represents �+>e+ and the red dashed line represents ��>e�.

Given q, if p becomes larger, the agent�s e¤ort becomes more informative about the

true output observed by the principal. Hence, the potential e¢ ciency gain is larger as

well by using the agent�s e¤ort to provide incentives for the principal to be truthful.

Also, F (x; L;�) and F (x;H;�) become further away from the 45 degree line, as shown

in Figure 1.5, because the true output is more informative for the principal about the

agent�s e¤ort. Therefore, F can be potentially closer to 1 so that the potential loss

from hiding the agent�s e¤ort from the principal becomes smaller, as measured by

1� (1�q)F
(1�p)+(p�q)F . Both factors contribute to what is shown in Figure 1.8.

I make two assumptions in this section: the agent�s strategy depends on the one-

period history, and the principal reports truthfully even o¤ the equilibrium path. In

next section, I try to relax them.

1.3.3 Sequential Equilibria

In this section, I consider sequential equilibria in which the principal reports truthfully

on the equilibrium path, without imposing any constraints on the agent�s strategies.

The contract is w�� according to Lemma 1. Therefore, the principal�s belief in period

t has the support Et, which grows over time. However, the agent�s belief is simple

in the sense that he always assigns probability one to the principal being on the

equilibrium path, therefore being going to be truthful in the future. Hence, the

principal�s strategy is public and static in the agent�s point of view even though

she may report untruthfully o¤ the equilibrium path. By De�nition 1, the agent�s

continuation strategy following any possible history (#t; et) is the best response to
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the principal�s same truth-reporting strategy. By mixing the agent�s continuation

strategy following (#t; et) with probability �[#t; �t = #t](et) assigned by the principal

on the equilibrium path, a new SE with respect to w�� featuring truth-reporting can be

constructed. The reason is that the principal with history (#t; �t = #t) has incentives

to be truthful when he believes of the agent using continuation strategy e j (#t; et)
with probability �[#t; �t = #t](et) 8et. Given that, a partial recursive structure is able
to be established so that a lower and an upper bound on the e¢ ciency attainable are

derived in Proposition 1.10.

De�ne a mapping 	 : 2[0;1] ! 2[0;1] as

	(X) �
n
x 2 [0; 1]

���9e; eL;0; eL;1; eH;0; eH;1 2 [0; 1] such that (32)-(36).o (31)

where

x = (1� �)e+ �

266664
(1� e)(1� q)

e(1� p)

(1� e)q

ep

377775
> 266664

eL;0

eL;1

eH;0

eH;1

377775 (32)

(1� e)(1� q)

(1� e)(1� q) + e(1� p)
(eH;0 � eL;0) +

e(1� p)

(1� e)(1� q) + e(1� p)
(eH;1 � eL;1) � y

(33)
(1� e)q

(1� e)q + ep
(eH;0 � eL;0) +

ep

(1� e)q + ep
(eH;1 � eL;1) � y (34)

(1� e)(1� q)

(1� e)(1� q) + e(1� p)
eL;0 +

e(1� p)

(1� e)(1� q) + e(1� p)
eL;1 2 co(X). (35)

(1� e)q

(1� e)q + ep
eH;0 +

ep

(1� e)q + ep
eH;1 2 co(X) (36)

8� 2
h

c
(p�q)2(�H��L)+[1�(p�q)]c ; 1

�
(the set is chosen so that y 2 [0; 1]). Proposition 1.10

shows that the mapping 	 is able to generate a lower and an upper bound on NED

probability of the agent exerting e¤ort attainable by SE with respect to w�� in which

the principal reports truthfully.

Proposition 1.10 Suppose that (e; r) is a SE with respect to w�� in which the prin-
cipal�s strategy features truth-reporting. Then,

(1� �)E0

" 1X
t=0

�tet

����� s
#
2 	1([0; 1]).

Proof. See Appendix Q.
Theoretically, the same logic applies in any continuation game. And the estimation
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is able to become more and more precise. However, it is not practical. For instance, if

I consider a continuation game starting from period 2, there are 16 instead of 4 NED

probabilities of the agent exerting e¤ort consistent with the number of the agent�s

possible two-period histories.

Report the low output

Report the high output

Report the high output
No low output has

been reported so far

Otherwise

kTt =

kTt ≠

The real output is low in
period kTTk ,,1)1( ⋅⋅⋅+−

Otherwise

Report the low (high)
Output with the probability

δ ( δ−1 )

Figure 1.9

Furthermore, I replicate the T -period review equilibrium in Fuchs (2007) without

referring to termination as follows: let the agent�s strategy be to exert e¤ort in period

t if and only if no low output has been reported before[40], and the principal�s review

strategy be illustrated in Figure 1.9 below where k = 1; 2; � � � and T is the length of
review phase. Then this is a SE with respect to w� if

�T �(1� p)T�1(p� q)(1� �T )

[1� �T (1� �(1� p)T )](1� �)
� c

(p� q)(�H � �L)� c
[41]. (37)

Notice that only one high output out of T outputs is enough for the principal to

report the high output with probability one in period T . Consequently, the agent o¤

the equilibrium path has stronger incentives to exert e¤ort because the probability

of him having no high output so far is higher. For the same reason, the agent on

the equilibrium path has weakest incentives to exert e¤ort in period T . Hence, it

su¢ ces to check the incentive compatibility constraint for the agent in period T who

has exerted e¤ort for the �rst T � 1 periods as shown in (37).

[40]The agent�s strategy is pure and public.
[41]The optimal PPE in Theorem 1 is a special case with T = 1 and the minimum � solving (37).
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Given q = 0:33, p = 0:67, �L = �4, �H = 8, c = 2 and � 2 [0:63; 0:99], I have
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Figure 1.10

in which the red line represents the e¢ ciency attainable by the T -period review equi-

librium, and the blue lines represent the lower and upper bound on the e¢ ciency

attainable by SE in which the principal reports truthfully. The comparison is in-

teresting because in the T -period review equilibrium, the principal is the only party

keeping private information on the equilibrium path, while the agent is the only party

keeping private information on the equilibrium path in SE in which the principal

reports truthfully.

It seems that it is optimal for the principal to keep private information on the

equilibrium path than the agent.

1.4 Conclusion

I have studied an in�nitely repeated principal-agent problem in which the principal

privately observes and publicly reports the agent�s output. The role of the agent�s

private strategies, which depend on the history of his private e¤orts, is examined

in providing incentives for the principal to be truthful. I show that there is a non-

negligible e¢ ciency loss associated with the use of the agent�s private history as an

incentive device. This e¢ ciency loss may, or may not be justi�ed by the e¢ ciency

gain. Moreover, the agent�s optimal strategy is shown to be consistent with empirical

studies on how employees respond to subjective performance evaluations.
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1.5 Appendix

1.5.1 Proof of Proposition 1.1

I have VSE(w) � V 1
WPBE(w) because SE is a re�nement of WPBE and V

1
WPBE(w) �

V 2
WPBE(w). So it su¢ ces to prove VSE(w) � V 1

WPBE(w) and V
1
WPBE(w) � V 2

WPBE(w).

Notice VSE(w) � V 1
WPBE(w) follows immediately if the full support assumption is

satis�ed. But unfortunately, that is not the case in this model.

Suppose (e; r) is a WPBE with respect to w in which the agent�s strategy is

pure. Notice �t has the full support regardless of the agent�s strategy due to q; p 2
(0; 1). Therefore, whether the principal�s history (#t; �t) is on the equilibrium path is

exclusively determined by her own strategy in the �rst t periods.

(1) By (4), given a public history #t, the principal with any private history �t as-

signs the probability one to the agent having the private history et de�ned recursively

as e0 = e(;) and

e�+1 = e((#0; � � �; #� ); (e0; � � �; e� )) 8� = 0; � � �; t� 2

where e is a deterministic function because the agent uses pure strategy. Therefore,

the agent�s any possible history (#t; et) with et 6= et is not in the support of the

principal�s belief at (#t; �t) 8�t.
(i) Assume (#t; �t) 8�t is o¤ the equilibrium path. Therefore, (#t; et) 8et is o¤

the equilibrium path too because otherwise there exists �t such that (#t; �t) is on the

equilibrium path. Let the agent shirks and the principal NED the expected transfer

following #t which form a SE with respect to w j #t. And it generates the minmax
NED payo¤s for both parties. As a result, the agent�s optimal strategy does not

change because (#t; �t) 8�t is always o¤ the equilibrium path given the principal�s

same strategy in the �rst t periods. And the principal�s optimal strategy does not

change either because she does not have incentives to put some weights on her minmax

NED payo¤ in w j #t.
(ii) Assume (#t; �t) is on the equilibrium path for �t 2 �t � �t.
Then the agent�s belief at (#t; et) 8et 6= et is de�ned by (3) with the same support

�
t
. So I �rst replace the agent�s continuation strategy following (#t; et) 8et 6= et given

the belief de�ned by (3). Then I replace the principal�s continuation strategy following

(#t; �t) 8�t =2 �t with the one following (#t; �t) 8�t 2 �t. Notice the replacement
proposed here does not guarantee the principal�s continuation strategy following #t is

the same regardless of �t because �
t
may not be a singleton set.

Recursively applying (i) or (ii) from the beginning gives a payo¤-equivalent SE

with respect to w in which the agent�s strategy is pure.
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(2) Replace the agent�s continuation strategy following (#t; et) 8et 6= et with the

one following (#t; et) because WPBE does not impose any restrictions on beliefs o¤

the equilibrium path. Recursively applying (i) or the replacement proposed here from

the beginning gives a payo¤-equivalent WPBE with respect to w in which the agent�s

strategy is pure and public.

1.5.2 Proof of Proposition 1.2

Assume w[#t](#t = �L) > w[#t](#t = �H) for some #
t.

Throughout the proof, I denote #t, the reported output in period t, by �i and �j
for i; j 2 fL;Hg with i 6= j. For notational simpli�cation, I denote (#t; �i) by h�ii
and (#t; �j) by h�ji.
De�ne the contract w0 by altering the continuation contract w j #t as follows,

w0[#t](�i) = w[#t](�j) and w0 j h�ii = w j h�ji ,

and the strategy pro�le s0 = (e0; r0) by altering the continuation strategies e j (#t; et)
and r j (#t; �t) as follows,

e0[#t; et](et) = e[#t; et](et) and e0 j (h�ii ; et) = e j (h�ji ; et) for 8et

r0[#t; �t; �t](�i) = r[#t; �t; �t](�j) and r0 j (h�ii ; �t) = r j (h�ji ; �t) for 8�t,

while keeping anything else unchanged. In words, given the public history #t, the

transfer in period t, as well as the continuation contract starting at period t + 1,

contingent on the reported output �L(�H) in the contract w0 are the same with the

ones contingent on the reported output �H(�L) in the contract w. In period t following

the public history #t, the agent�s strategy doesn�t change, but the principal reports

�L(�H) whenever he is supposed to report �H(�L) according to r. After that, the

continuation strategies are chosen from s by treating the reported output �L(�H) as

�H(�L).

I try to show (e0; r0) is a SE with respect to w0. It su¢ ces to show

'[h�ii ; et+1; s0](�t+1) = '[h�ji ; et+1; s](�t+1)

�[h�ii ; �t+1; s0](et+1) = �[h�ji ; �t+1; s](et+1)

which are both true even when the agent�s belief is de�ned by (5), therefore indepen-

dent of the history of reported outputs.

That completes the proof.
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1.5.3 Proof of Proposition 1.3

De�ne a function B : [�;+1)! R as

B(x) � maxUA + UP s.t. (UA; UP ) 2 �(�(x)) (38)

where �(x) � f(UA; UP ) j UA � wL; U
P � ��wL and UA+UP � xg. I show U(w) �

B1(� � c) as follows: notice �1(V (w)) � V �(w) � �(� � c) where the �rst relation

follows the fact (wL; ��wL) is the minmax payo¤ pair and the second relation follows
the fact ��c is the maximum total payo¤. Therefore, I have �1(V (w)) � �(�(��c))
because � is monotonic therefore U(w) � B(��c) � ��c. By induction, a decreasing
sequence

�
Bm(� � c) � U(w)

	1
m=0

can be constructed with B1(� � c) as an upper

bound (not necessarily the least upper bound) on U(w).

Lemma 1.4 (a) If (p� q)2(�H � �L) � (1� q)c,

B(x) =

8>><>>:
�x+ (1� �)� , for x 2

h
�; � + 1��

�(p�q) max fc; (p� q)(wH � wL)g
�

�x+ (1� �)
�
� � 1�q

p�qc
�
, for x � � + 1��

�(p�q) max fc; (p� q)(wH � wL)g
;

(b) If (p� q)2(�H � �L) < (1� q)c, B(x) = �x+ (1� �)�, for x 2 [�;+1).

Proof. Rewrite the optimization problem as follows,

max
e;r;UL;UH

"
e

1� e

#| "
p 1� p

q 1� q

# "
(1� �)�H

(1� �)�L

#
+

"
rH 1� rH

rL 1� rL

#"
�(UAH + UPH)

�(UAL + UPL )

#!
�e(1��)c

subject to

e 2 argmax
e02[0;1]

UA(e0; r j w;UL; UH) (39)

r 2 argmax
r02[0;1]2

UP (e; r0 j w;UL; UH) (40)

UL; UH 2 �(x). (41)

I proceed by considering two auxiliary optimization problems: one with the addi-

tional constraint e = 0 and one with the additional constraint e > 0. Therefore, B(x)

can be calculated by comparing the results from these two complementary optimiza-

tion problems.

(1) e = 0.

It�s straightforward to show B1(x) = (1� �)�+ �x for UAL +UPL = UAH +U
P
H = x;

(2) e > 0.
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First notice e > 0 only if

UPH � UPL =
1� �

�
(wH � wL) (42)

(rH � rL)(p� q)[(1� �)(wH � wL) + �(UAH � UAL )] � (1� �)c. (43)

(42) holds because otherwise the principal reports the low/high output regardless of

the true output so that the agent does not have incentives to exert e¤ort. (43) is

derived from (39).

Therefore, I proceed by assuming x� � � 1��
�
(wH �wL) because, otherwise, (42)

can not hold. Without loss of generality, I assume

UPL = � � wL and UPH = � � wL +
1� �

�
(wH � wL) (44)

max
�
UAL + UPL ; U

A
H + UPH

	
= x. (45)

(i) If UAH + UPH = x, I have

UAH = x�
�
� � wL +

1� �

�
(wH � wL)

�
and UAL 2 [wL; x� (� � wL)]

which implies (1 � �)(wH � wL) + �(UAH � UAL ) 2 [0; �(x � �)]. Therefore, rH > rL

according to (43) which implies

UAH � UAL �
1� �

�(p� q)(rH � rL)
c� 1� �

�
(wH � wL) �

1� �

�(p� q)
c� 1� �

�
(wH � wL).

The �rst equality always holds since otherwise UAL can be increased without changing

e, rL and rH resulting in a greater value of the objective function. So I can rewrite

the optimization problem as follows,

max
e;rL;rH2[0;1]

"
e

1� e

#| "
p 1� p

q 1� q

# "
(1� �)�H

(1� �)�L

#
+

"
rH 1� rH

rL 1� rL

#"
�x

�y

#!
� e(1� �)c

subject to
1� �

�(p� q)(rH � rL)
c 2 [0; x� �]

where

y = x� 1� �

�(p� q)(rH � rL)
c.

The constraint set is non-empty if and only if x � � + 1��
�(p�q)c. As a result, the

maximum value is (1� �)(� � 1�q
p�qc) + �x for e = rH = 1 and rL = 0.
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(ii) If UAL + UPL = x, I have

UAH 2
�
wL; x�

�
� � wL +

1� �

�
(wH � wL)

��
and UAL = x� (� � wL)

which implies (1 � �)(wH � wL) + �(UAH � UAL ) 2 [(1 � �)(wH � wL) � �(x � �); 0].

Therefore, �H < �L according to (43) which implies

UAH �UAL �
1� �

�(p� q)(rH � rL)
c� 1� �

�
(wH �wL) � �

1� �

�(p� q)
c� 1� �

�
(wH �wL).

The �rst equality always holds since otherwise UAH can be increased without changing

e, rL and rH resulting in a greater value of the objective function. So I can rewrite

the optimization problem as follows,

max
e;rL;rH2[0;1]

"
e

1� e

#| "
p 1� p

q 1� q

# "
(1� �)�H

(1� �)�L

#
+

"
rH 1� rH

rL 1� rL

#"
�y

�x

#!
� e(1� �)c

subject to
1� �

�(p� q)(rH � rL)
c 2

�
1� �

�
(wH � wL)� (x� �); 0

�
where

y = x+
1� �

�(p� q)(rH � rL)
c.

The constraint set is non-empty if and only if x � � + 1��
�(p�q)c+

1��
�
(wH � wL). As a

result, the maximum value is (1� �)
�
� � 1�q

p�qc
�
+ �x for e = rL = 1 and rH = 0.

Hence, I conclude B2(x) = (1� �)
�
� � 1�q

p�qc
�
+ �x if x � � + 1��

�(p�q)c.

Therefore,

B(x) =

8><>:
maxfB1(x); B2(x)g , if x � � + 1��

�(p�q)c

B1(x) , if otherwise

.

The result follows by algebra.
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Figure 1.11

The function B(x) is illustrated in the �gure above. Therefore, as long as B(x) � x

for x = � + 1��
�(p�q) max fc; (p� q)(wH � wL)g, B1(� � c) = � � 1�q

p�qc. Otherwise,

B1(� � c) = �.

This completes the proof.

1.5.4 Proof of Theorem 1.1

Let U i(j) for i 2 fA;Pg and j 2 fC;Dg denote the player i�s NED payo¤ at state j.
Apparently, I have UA(D) = w�L and U

P (D) = � � w�L. Furthermore,

UA(C) = (1� �)(w � c) + �[pUA(C) + (1� p)((1� rL)U
A(D) + rLU

A(C))]

UP (C) = (1� �)(� � w) + �[pUP (C) + (1� p)((1� rL)U
P (D) + rLU

P (C))]

where w = pw�H + (1� p)[(1� rL)w
�
L + rLw

�
H ]. By algebra, I have

UA(C) =
(1� �)(w � c) + �(1� p)(1� rL)wL

1� �p� �(1� p)rL

UP (C) =
(1� �)(� � w) + �(1� p)(1� rL)(� � wL)

1� �p� �(1� p)rL

so that

UA(C) + UP (C) =
(1� �)(� � c) + �(1� p)(1� rL)�

1� �p� �(1� p)rL
= � � 1� q

p� q
c
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as claimed.

The incentive compatibility at state D is straightforward. At state C, given the

principal�s strategy of reporting truthfully, the agent�s NED payo¤ of shirking and

exerting e¤ort are

(1� �)w + �[qUA(C) + (1� q)((1� rL)U
A(D) + rLU

A(C))]

(1� �)(w � c) + �[pUA(C) + (1� p)((1� rL)U
A(D) + rLU

A(C))]

respectively which are equal by algebra where w = qw�H +(1� q)[(1� rL)w�L+ rLw�H ].
So it�s optimal for the agent to exert e¤ort at State C. Also in state C, given the

agent�s strategy of exerting e¤ort, the expected utilities for the principal to report the

low output and the high output (regardless of the true output) are

�(1� �)w�L + �UP (D) and � (1� �)w�H + �UP (C)

respectively which are equal by algebra. So it�s optimal for the principal to report

truthfully at state C. And � 2
h

c
(p�q)2(�H��L)+qc ; 1

�
guarantees rL 2 [0; 1].

This completes the proof.

1.5.5 Proof of Proposition 1.4

For x 2 [�;+1), �1(x) � f(UA; UP ) j � � UA + UP � xg. And de�ne a mapping
�1 : 2

R2 ! 2R
2
as

�1(X) =

8>>>>>>>>>>><>>>>>>>>>>>:
(UA; UP )

�����������������

9UL; UH 2 co(X), w 2 R2, e 2 [0; 1] and r 2 [0; 1]2

such that

UA = UA((e; r) j w;UL; UH)
UP = UP ((e; r) j w;UL; UH)

e 2 argmax
e02[0;1]

UA((e0; r) j w;UL; UH)

r 2 argmax
r02[0;1]2

UP ((e; r0) j w;UL; UH)

9>>>>>>>>>>>=>>>>>>>>>>>;
.

Now, the set of the feasible payo¤ pairs V is de�ned as

V = f(UA; UP ) j � � UA + UP � � � cg

because the payo¤s are transferable between the agent and the principal. Therefore,

there exists x 2 [�; � � c] such that

co(�11 (V )) = f(UA; UP ) j � � UA + UP � xg
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which implies that I can iterate on x instead of the whole set. By applying the

procedure in the proof of Proposition 1.3, I have

x =

8>><>>:
� , for � 2

�
0; c

(p�q)2(�H��L)+qc

�
� � 1�q

p�qc , for � 2
h

c
(p�q)2(�H��L)+qc ; 1

� .
That completes the proof.

1.5.6 Proof of Lemma 1.1

The case of wH = 0 is trivial so that I proceed by assuming wH > 0.

Notice, given any history (#t; et), the agent believes that the history of the true

outputs �t is consistent with the history of the reported outputs #t due to p; q 2 (0; 1)
which implies the principal�s potential deviations are undetectable. That in turn

implies that the agent believes of the principal being going to report truthfully in the

future. Therefore, the agent�s strictly dominant strategy is shirking if wH < c
p�q and

exerting e¤ort if wH > c
p�q . In either case, the principal does not have incentives to

report the high output as long as wH > 0 because the agent�s continuation strategy

is independent of the principal�s report. A contradiction.

1.5.7 Proof of Theorem 1.2

By de�nition, there exists a PPE (e; r) with respect to w�� 8e 2 C such that r features
truth-reporting and

e = (1� �)e+ �

"
e(1� p) + (1� e)(1� q)

ep+ (1� e)q

#T "
eL

eH

#
(46)

where

e# = (1� �)E1

" 1X
t=1

�t�1et

����� s; f#0 = #g
#
2 C 8# 2 �.

Regardless of the true output, the principal�s NED payo¤ following the reported low

output and the reported high output are

�[eL(� � pw��H ) + (1� eL)(� � qw��H )]

�(1� �)w��H + �[eH(� � pw��H ) + (1� eH)(� � qw��H )]

respectively which imply

eH � eL =
1� �

�

c

(p� q)[(p� q)(�H � �L)� c]
� y > 0 (47)
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because, otherwise, the principal strictly prefers reporting the low output or reporting

the high output.

By substituting eH in (46) by (47), I have

e = (1� �)e+ �eL + �[ep+ (1� e)q]y

which implies that given e, the maximum eL denoted by eL is achieved by e = 0.

Therefore,

eL =
1

�
e� qy

as illustrated in the following �gure,

e

Le

]))()[(( cqpqp
qc

LH −−−− θθ

Figure 1.12

Hence, I conclude e � qc
(p�q)[(p�q)(�H��L)�c] . Otherwise, eL drops below zero eventually.

By substituting eL in (46) by (47), I have

e = (1� �)e+ �eH � �[e(1� p) + (1� e)(1� q)]y

which implies that given e, the minimum eH denoted by eH is achieved by e = 1.

Therefore,

eH =
1

�
e+ (1� p)y � 1� �

�

which implies e � (p�q)2(�H��L)�(1�q)c
(p�q)[(p�q)(�H��L)�c] . Otherwise, eH rises above one eventually.
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Therefore,

C �
�

qc

(p� q)[(p� q)(�H � �L)� c]
;
(p� q)2(�H � �L)� (1� q)c

(p� q)[(p� q)(�H � �L)� c]

�
� [e; e]

if (p � q)2(�H � �L) � c. Otherwise, C is empty. Notice, if � < c
(p�q)2(�H��L) , the

interval above is not large enough to make (47) hold. So I proceed by assuming

otherwise.

In order to complete the proof, it su¢ ces to show there exists a PPE with respect

to w�� 8e 2 [e; e] such that r features truth-reporting and (46). I solve for e = e; e
while leaving the rest for the readers as follows: for e = e, et = 0 if t = 1 or #t�1 = L

and et =
1
�

c
(p�q)2(�H��L) otherwise; for e = e, et = 1 if t = 1 or #t�1 = H and

et = 1� 1
�

c
(p�q)2(�H��L) otherwise.

1.5.8 Proof of Lemma 1.2

According to Proposition 12.2.2 by Mailath and Samuelson (2006), it su¢ ces to prove

(20) and (21) are no pro�table one-shot deviations conditions. Notice in general, this

game does not satisfy full support assumption which is required by Proposition 12.2.2.

Fortunately, it will not be a problem for the case under consideration in which the

principal reports truthfully so that (3) is well-de�ned everywhere.

If the agent is at state 
 2 �, then the principal�s NED payo¤ from following the

equilibrium truth-reporting strategy is

|(
) � (1� e
)
�
(1� q)�L + q

�
�H �

c

p� q

��
+ e


�
(1� p)�L + p

�
�H �

c

p� q

��
.

Given � 2 � and x 2 N(�), if the true output is low, then the principal assigns
the probability F (x; L;�) to the agent having exerted e¤ort. Hence, the principal�s

NED payo¤ from reporting the high output instead in current period but reporting

truthfully thereafter is

(1� �)

�
� c

p� q

�
+ �[(1� F (x; L;�))|(H; 0) + F (x; L;�)|(H; 1)]

which is supposed to be lower than the principal�s NED payo¤ from following the

equilibrium truth-reporting strategy

�[(1� F (x; L;�))|(L; 0) + F (x; L;�)|(L; 1)].

This gives (20). A similar argument gives (21).
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1.5.9 Proof of Proposition 1.5

By algebra, I conclude the belief-updating function F : [0; 1]����! [0; 1] has the

following properties:

(a) 0 < F (x; L;�) < e(x;�) < F (x;H;�) < 1 for e(x;�) 2 (0; 1);
(b) F (x; L;�) = e(x;�) = F (x;H;�) for e(x;�) = 0 or 1;

(c) F (x; L;�) and F (x;H;�) are monotone and continuous in x;

(d) F (x; L;�) is convex in x and F (x;H;�) is concave in x.

8� 2 � and x 2 N(�),

(F (x;H;�)� F (x; L;�))[(eH;1 � eL;1)� (eH;0 � eL;0)] � 0

following (20) and (21). Remember F (x;H;�) � F (x; L;�) 8� 2 � and x 2 N(�) by
(a) and (b).

Suppose there exist � and x 2 N(�) such that F (x;H;�) > F (x; L;�). Then

eH;0 � eL;0 � eH;1 � eL;1. Furthermore, if y < eH;0 � eL;0, (20) does not hold. If
y > eH;1 � eL;1, (21) does not hold. So the result follows.
Suppose F (x;H;�) = F (x; L;�) 8� 2 � and x 2 N(�). This implies e(x;�) = 0

or 1 8� 2 � and x 2 N(�) by (a) and (b). If there exist � 2 � and x 2 N(�) such
that e(x;�) = 0, then F (x; L;�) = F (x;H;�) = 0 which implies eH;0 � eL;0 = y

by (20) and (21). If there exist � 2 � and x 2 N(�) such that e(x;�) = 1, then

F (x; L;�) = F (x;H;�) = 1 which implies eH;1�eL;1 = y by (20) and (21). Therefore,

eH;0�eL;0 = y = eH;1�eL;1 if e(x;�) = 0 for some � 2 � and x 2 N(�) and e(x;�) = 1
for some � 2 � and x 2 N(�). This leaves us two cases: (1) suppose e(x;�) = 0 8� 2 �
and x 2 N(�). If e(x;�) = 0 for � 2 � and x 2 Nt(�), then F (x; �;�) = 0 2 Nt+1(L)
and Nt+1(H) by (17). Hence, e(F (x; �;�);L) = e(F (x; �;�);H) = 0 which implies

eL;0 = eH;0 = 0, and in turn eH;0 � eL;0 = 0. This contradicts (20) and (21) given

y > 0; (2) suppose e(x;�) = 1 8� 2 � and x 2 N(�). A similar contradiction is

reached.

This completes the proof.

1.5.10 Proof of Proposition 1.6

Following Ely, Hörner and Olszewski (2005), I say the e¤ort function e support-

ing truth-reporting is belief-free if the principal has appropriate incentive to report

truthfully even when she believes with certainty of the agent having either shirked

or exerted e¤ort. Suppose the principal believes of the agent having shirked. She

reports truthfully if and only if eH;0 � eL;0 = y due to (20) and (21). Suppose the

principal believes of the agent having exerted e¤ort. She reports truthfully if and only

if eH;1� eL;1 = y due to (20) and (21). So I conclude the e¤ort function e supporting



www.manaraa.com

52

truth-reporting is belief-free if and only if eH;0 � eL;0 = y = eH;1 � eL;1. Hence,

e� 2 argmax
eL;0;eL;1;eH;0;eH;1

�
e0

1� (e1 � e0)

�
subject to

1� �

1� �(e1 � e0)
(eH;0 � eL;0) = y (48)

1� �

1� �(e1 � e0)
(eH;1 � eL;1) = y (49)

eL;0; eL;1; eH;0; eH;1 2 [0; 1]. (50)

By (48) and (49), I have e�H;0 � e�L;0 = e�H;1 � e�L;1 > 0. Notice either e
�
H;0 or e

�
H;1

must be one. Otherwise, e0 with e0
 = e
 + minf1 � e�H;0; 1 � e�H;1g 8
 2 � satis�es
(48)-(50) and is strictly more e¢ cient than e�. A contradiction.

Case 1: Suppose e�H;0 = 1.
Assume e�H;1 < 1 which implies there exists " > 0 such that e0 = (e�L;0 e

�
L;1 + "

e�H;0 e
�
H;1 + ")T satisfy (50) with

1� �

1� �(e01 � e00)
(e0H;0 � e0L;0) =

1� �

1� �(e01 � e00)
(e0H;1 � e0L;1) > y.

Furthermore, there exists � > 0 such that e00 = (e0L;0 + � e0L;1 + � e0H;0 e
0
H;1)

T satis�es

(48)-(50) which is strictly more e¢ cient than e�. A contradiction. So I conclude

e�H;1 = 1 and the result follows.

Case 2: Suppose e�H;1 = 1.
Let z � eH;0 � eL;0 so that I can rewrite the optimization problem as follows,

fe�H;0; e�H;0 � e�L;0g 2 argmax
eH;0;t

�
eH;0 � (1� q)z

1� [(p� q)z + (1� eH;0)]

�
subject to

1� �

1� �[(p� q)z + (1� eH;0)]
z = y (51)

eH;0; eH;0 � z 2 [0; 1]. (52)

From (51), I have

(p� q)z + (1� eH;0) =
1

�
� (1� �)z

�y
with

deH;0
dz

=
(p� q)2(�H � �L)

c
� 1.
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Inserting it into the objective function gives

1� (1� p)z �
h
1
�
� (1��)z

�y

i
1�

h
1
�
� (1��)z

�y

i
which is increasing in z. Hence, it is optimal to have e�H;0 = 1 and z

� = 1
�

c
(p�q)2(�H��L) .

The result follows immediately.

This completes the proof.

1.5.11 Proof of Proposition 1.7

Since e�L < e�H = 1, I have

e�Lp

(1� e�L)q + e�Lp
< 1 =

e�H(1� p)

(1� e�H)(1� q) + e�H(1� p)

which implies that there exists " > 0 such that for any decision function e 2 B"(e�),

F (x;H;L)� (e�L + ")p

[1� (e�L + ")]q + (e�L + ")p

<
(e�H � ")(1� p)

[1� (e�H � ")](1� q) + (e�H � ")(1� p)
� F (x; L;H)

8x 2 [0; 1]. Therefore, for any e 2 B"(e�), there does not exist F such that Q(L) and
Q(H) can be separated. The result follows.

1.5.12 Proof of Proposition 1.8

I �rst show Nt(L) � Nt(H) 8t � 1. Suppose x 2 Nt(L) which implies that 9�0 2 � and
(L; �) 2 �2 such that F (x0; �;�0) for some x0 2 Nt(�0). So for �0 2 � and (H; �) 2 �2,
I have &(�0; H; �) = H and x = F (x0; �;�0) for x0 2 Nt(�0) which implies x 2 Nt(H).
Therefore, Nt(L) � Nt(H). A similar argument establishes Nt(H) � Nt(L). The
result follows.

Therefore, it su¢ ces to prove inf N1 �
��;1

��;0+��;1
� supN1 8� 2 �. By (??), I have

�L;0 = (1� q)
X


2�
(1� e
)�
 and �L;1 = (1� p)

X

2�

e
�


and in turn

�L;1
�L;0 + �L;1

=
(1� p)

P

2� e
�


(1� q)
P


2�(1� e
)�
 + (1� p)
P


2� e
�
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which implies
�L;1

�L;0+�L;1
goes between

(1� p)
P


2f(L;0);(L;1)g e
�


(1� q)
P


2f(L;0);(L;1)g(1� e
)�
 + (1� p)
P


2f(L;0);(L;1)g e
�

= F

�
�L;1

�L;0 + �L;1
; L;L

�
and

(1� p)
P


2f(H;0);(H;1)g e
�


(1� q)
P


2f(H;0);(H;1)g(1� e
)�
 + (1� p)
P


2f(H;0);(H;1)g e
�


=F

�
�H;1

�H;0 + �H;1
; L;H

�
.

A similar argument applies for
�H;1

�H;0+�H;1
.

(b) (Su¢ ciency) Suppose (20) and (21) are satis�ed 8� 2 � and x 2 fx; xg. Then,
8� 2 � and x = tx+ (1� t)x for some t 2 [0; 1],

(1� F (x; L;�))(eH;0 � eL;0) + F (x; L;�)(eH;1 � eL;1)
= (eH;0 � eL;0) + F (x; L;�)[(eH;1 � eL;1)� (eH;0 � eL;0)]
� (eH;0 � eL;0) + [tF (x; L;�) + (1� t)F (x; L;�)][(eH;1 � eL;1)� (eH;0 � eL;0)]
� y

where the �rst inequality follows the facts (1) eH;0� eL;0 � eH;1� eL;1; (2) F (x; L;�)
is convex in x. And

(1� F (x;H;�))(eH;0 � eL;0) + F (x;H;�)(eH;1 � eL;1)
= (eH;0 � eL;0) + F (x;H;�)[(eH;1 � eL;1)� (eH;0 � eL;0)]
� (eH;0 � eL;0) + [tF (x;H;�) + (1� t)F (x;H;�)][(eH;1 � eL;1)� (eH;0 � eL;0)]
� y

where the �rst inequality follows the facts (1) eH;0 � eL;0 � eH;1 � eL;1 by Lemma 9;
(2) F (x;H;�) is concave in x.

(Necessarily) By de�nition of x, there exists a sequence
n
xn 2

1
[
t=1
Nt
o1
n=1

such that

x = lim
n!1

xn and xn satis�es (20) and (21). Therefore, by taking n to 1, I conclude x
satis�es (20) and (21) as well since F (x; �;�) is continuous in x. A similar argument

applies for x.

This completes the proof.
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1.5.13 Proof of Theorem 1.3

(a) The existence of " > 0 such that either eH;0 < 1 � " or eH;1 < 1 � " has been

proven in the paper.

(b) Suppose x = 0. Since x = inf
1
[
t=1
Nt, there exists a sequence

n
xn 2

1
[
t=1
Nt
o1
n=1

such that lim
n!1

xn = 0. By (17), there exist �n 2 �, �n 2 � and x0n 2 Ntn(�n) for
some tn � 0 such that xn = F (x0n; �n;�n). Then lim

n!1
F (x0n; �n;�n) = 0 which implies

eH;0 � eL;0 = y by (20) and (21). Since the e¤ort function is belief-based, I have

eH;1 � eL;1 6= y which implies F (x; �;�) = 0 8� 2 �, � 2 � and x 2 N(�) by (20) and
(21), or equivalently, F = 0 by (26). A contradiction with F > 0.

Suppose x = 1. Since x = sup
1
[
t=1
Nt, there exists a sequence

n
xn 2

1
[
t=1
Nt
o1
n=1

such that lim
n!1

xn = 1. By (17), there exist �n 2 �, �n 2 � and x0n 2 Ntn(�n) for
some tn � 0 such that xn = F (x0n; �n;�n). Then lim

n!1
F (x0n; �n;�n) = 1 which implies

eH;1 � eL;1 = y by (20) and (21). Since the e¤ort function is belief-based, I have

eH;0 � eL;0 6= y which implies F (x; �;�) = 1 8� 2 �, � 2 � and x 2 N(�) by (20) and
(21), or equivalently, F = 1 by (26). A contradiction with F < 1.

Since F 2 [F;F], I conclude � < x � x < 1� � for some � > 0. I will come back

to prove the second inequality holds strictly in the end.

Suppose eL;0 = 0. If e1 = 1, then
�L;1

�L;0+�L;1
=

�H;1
�H;0+�H;1

= 1 which implies x = 1. A

contradiction. So I proceed by assuming e1 < 1 which implies
�L;1

�L;0+�L;1
;

�H;1
�H;0+�H;1

< 1.

Consider the principal has the initial state L followed by the history f(L;L); (L;L); ���g
which implies the principal always observes the true output to be low then reports

truthfully. De�ne x0 =
�L;1

�L;0+�L;1
< 1 and xt+1 = F (xt; L;L). Hence, fxtg1t=0 is a

decreasing sequence because xt+1 = F (xt; L;L) � e(xt;L) � xt where the second

inequality follows the fact eL;0 = 0. Without loss of generality, assume eL;1 > 0 which

implies 0 < xt+1 < xt if xt > 0. Therefore, lim
t!1

xt = 0 which implies x = 0. A

contradiction.

Suppose eH;1 = 1. If e0 = 0, then
�L;1

�L;0+�L;1
=

�H;1
�H;0+�H;1

= 0 which implies x = 0. A

contradiction. So I proceed by assuming e0 > 0 which implies
�L;1

�L;0+�L;1
;

�H;1
�H;0+�H;1

> 0.

Consider the principal has the initial stateH followed by the history f(H;H); (H;H); ��
�g which implies the principal always observes the true output to be high then reports
truthfully. De�ne x0 =

�H;1
�H;0+�H;1

> 0 and xt+1 = F (xt; H;H). Hence, fxtg1t=0 is an
increasing sequence because xt+1 = F (xt; H;H) � e(xt;H) � xt where the second

inequality follows the fact eH;1 = 1. Without loss of generality, assume eH;0 < 1 which

implies 1 > xt+1 > xt if xt < 1. Furthermore, lim
t!1

xt = 1 which implies x = 1. A

contradiction.

Suppose x = x. This implies
�L;1

�L;0+�L;1
=

�H;1
�H;0+�H;1

and equivalently (1�p)e0
(1�q)(1�e1)+(1�p)e0 =

pe0
q(1�e1)+pe0 . The equality holds only if e0 = 0 which implies eL;0 = 0 or e1 = 1 which
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implies eH;1 = 1. A contradiction

(c) Consider an auxiliary optimization problem by imposing eL;0 � eL;1 as follows

max
eL;0;eL;1;eH;0;eH;1

�
e0

1� (e1 � e0)

�
subject to

1� �

1� �(e1 � e0)
(eH;0 � eL;0) � y (53)

1� �

1� �(e1 � e0)
(eH;1 � eL;1) � y (54)

eL;0 � eL;1 (55)

eL;0; eL;1; eH;0; eH;1 2 [0; 1]. (56)

Step 1: eH;1 = 1.
I have eH;1 > eL;1 � eL;0 where the �rst inequality follows (54) and the second

follows (55). Furthermore, (53) and (54) imply eH;1�eL;1 � eH;0�eL;0. So I conclude
eH;1 � eH;0. Hence, if eH;1 < 1, e0 with e0
 = e
 + (1� eH;1) 8
 2 � satis�es (53)-(56)
which is strictly more e¢ cient.

Step 2: eL;0 = eH;0 � eL;1 or eL;0 = eL;1 � eH;0.

If e0 � eL;1, then e0 = (e0 eL;1 e0 eH;1) satis�es (53)-(56) and is as e¢ cient as e. If

e0 > eL;1, then e0 = (eL;1 eL;1
e0�(1�q)eL;1

q
eH;1) satis�es (53)-(56) and is as e¢ cient as

e. Hence, without loss of generality, I focus on these two cases thereafter.

Step 3: Suppose eL;0 = eH;0 � e0 � eL;1.

Notice (53) is satis�ed automatically. Rewrite the optimization problem as follows,

max
e0;eL;1

�
e0

1� [(1� p)eL;1 + p� e0]

�
subject to

1� �

1� �[(1� p)eL;1 + p� e0]
(1� eL;1) � y (57)

e0 � eL;1 (58)

e0; eL;1 2 [0; 1]. (59)

Since the left hand side of (57) is decreasing in eL;1, then (58) must bind. Hence, I

have

e0 = (1� p)eL;1 + p�
�
1

�
� (1� �)(1� eL;1)

�y

�
with

de0
deL;1

� 0.
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Inserting it into the objective function gives

(1� p)eL;1 + p�
h
1
�
� (1��)(1�eL;1)

�y

i
1�

h
1
�
� (1��)(1�eL;1)

�y

i
which is decreasing in eL;1. Hence, (57) must bind which degenerates into the case

considered in Step 4.

Step 4: Suppose eL;0 = eL;1 � eL � eH;0.

Rewrite the optimization problem as follows,

max
eL;eH;0

�
(1� q)eL + qeH;0

1� [p� qeH;0 � (p� q)eL]

�
subject to

1� �

1� �[p� qeH;0 � (p� q)eL]
(eH;0 � eL) � y (60)

1� �

1� �[p� qeH;0 � (p� q)eL]
(1� eL) � y (61)

eL � eH;0 (62)

eL; eH;0 2 [0; 1]. (63)

Notice (1) the left hand side of (60) is increasing in eH;0 and decreasing in eL; (2)

the left hand side of (61) is decreasing in both eH;0 and eL. Furthermore, eL =
1
�

c
(p�q)2(�H��L) and eH;0 = 1 make both (60) and (61) bind. So I conclude (61) binds,

but (60) does not. Hence,

p� qeH;0 � (p� q)eL =
1

�
� (1� �)(1� eL)

�y
with

deL
deH;0

� 0.

Inserting it into the objective function gives

p+ (1� p)eL �
h
1
�
� (1��)(1�eL)

�y

i
1�

h
1
�
� (1��)(1�eL)

�y

i
which is decreasing in eL. Then it is optimal to have eL = 1

�
c

(p�q)2(�H��L) and eH;0 = 1.

So I conclude that there does not exist a decision function supporting truth-

reporting which features eL;0 � eL;1 and is strictly more e¢ cient than e�.

This completes the proof.
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1.5.14 Proof of Proposition 1.9

By Proposition 1.8, I have

Nt+1 = �(Nt) �

8><>:x 2 [0; 1]
�������

9� 2 � and � 2 �
such that

x = F (x0; �;�) for some x0 2 Nt

9>=>; 8t � 1.

Given N0(L) and N0(H) are singletons, N1 is �nite because both � and � are �nite.
By induction, I conclude Nt is �nite for t � 1. Let xt � minNt and xt � maxNt for
t � 1. I have

xt+1 = minF (x; �;�) s.t. x 2 fxt; xtg, � 2 � and � 2 � (64)

xt+1 = maxF (x; �;�) s.t. x 2 fxt; xtg, � 2 � and � 2 � (65)

because F (x; �;�) is monotone in x. By de�nition, there exist � 2 � and � 2 � such
that x1 = F

�
��;1

��;0+��;1
; �;�

�
. Given x1 �

��;1
��;0+��;1

� x1 as shown in Proposition 1.8,

either F (x1; �;�) or F (x1; �;�) must be less than x1 because F (x; �;�) is monotone

in x. Hence, x2 � x1. Similarly, there exist � 2 � and � 2 � such that x1 =

F
�

��;1
��;0+��;1

; �;�
�
. Given x1 �

��;1
��;0+��;1

� x1 as shown in Proposition 1.8, either

F (x1; �;�) or F (x1; �;�) must be greater than x1 because F (x; �;�) is monotone in

x. Hence, x2 � x1. By induction, I conclude fxtg1t=1 is a decreasing sequence with
lim
t!1

xt = x and fxtg1t=1 is an increasing sequence with lim
t!1

xt = x.

By taking t to 1 in (64) and (65), I have

x = minF (x; �;�) s.t. x 2 fx; xg, � 2 � and � 2 �

x = maxF (x; �;�) s.t. x 2 fx; xg, � 2 � and � 2 �

because F (x; �;�) is continuous in x. Furthermore, given F (x; L;�) � F (x;H;�), the

results follow.

I have

e(x;L) = eL;0 + (eL;1 � eL;0)x � eH;0 + (eH;1 � eH;0)x = e(x;H) 8x 2 [0; 1]

because eL;0 � eH;0 and eL;1 � eL;0 � eH;1 � eH;0 implied by eH;0 � eL;0 � eH;1 � eL;1.

Hence,

F (x; �;L) � F (x; �;H) 8x 2 [0; 1] and � 2 �.

which implies

x = minF (x; L;L)s:t:x 2 fx; xg
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x = maxF (x;H;H)s:t:x 2 fx; xg.

Furthermore, since eL;0 � eL;1 and x � x, I have e(x;L) � e(x;L) which implies

F (x; L;L) � F (x; L;L). So x = F (x; L;L). (a) If eH;0 � eH;1, then e(x;H) � e(x;H)

which implies F (x;H;H) � F (x;H;H). So x = F (x;H;H); (b) If eH;0 � eH;1, then

e(x;H) � e(x;H) which implies F (x;H;H) � F (x;H;H). So x = F (x;H;H).

1.5.15 Proof of Theorem 1.4

I proceed by considering one case with e+H;0 � e+H;1 and one case with e
+
H;0 � e+H;1.

Case 1: Suppose e+H;0 � e+H;1. Hence,

e+ 2 argmax
eL;0;eL;1;eH;0;eH;1

�
e0

1� (e1 � e0)

�
subject to

(1�F (x; L;�))(eH;0�eL;0)+F (x; L;�)(eH;1�eL;1) � y 8� 2 � and x 2 fx; xg (66)

(1�F (x;H;�))(eH;0�eL;0)+F (x;H;�)(eH;1�eL;1) � y 8� 2 � and x 2 fx; xg (67)

eL;0 � eL;1 (68)

eL;0 � eH;0 (69)

eH;0 � eH;1 (70)

eH;0 � eL;0 � eH;1 � eL;1 (71)

eL;0; eL;1; eH;0; eH;1 2 [0; 1] (72)

where fx; xg solve
x = F (x; L;L) (73)

x = F (x;H;H). (74)

Notice (66) and (67) are no pro�table one-shot deviations conditions as usual, (68)

follows Theorem 1.3, (69) follows e+L;0 � e+H;0, (70) is imposed by assumption and

(71) follows Proposition 1.5. Furthermore, given (68)-(71), (73) and (74) follow (b)

in Proposition 1.9.

Step 1: Since e+ is strictly more e¢ cient than the optimal belief-free decision
function e�, (71) does not bind which implies (66) and (67) can be rewritten as

F (x; L;�) � F � F (x;H;�) 8� 2 � and x 2 fx; xg. (75)
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Furthermore, I have

F (x; L;H) � F (x; L;H) � F (x; L;L) � F (x; L;L)

F (x;H;L) � F (x;H;L) � F (x;H;H) � F (x;H;H)

by (??)-(71) and x � x. So (75) can be further simpli�ed as

F (x; L;H) � F � F (x;H;L). (76)

Notice Theorem 1.4 follows if both constraints in (76) bind.

Step 2: F (x+; L;H) = F+.
I show

P

2�

de(x;L)
de


���
e+
> 0 which implies

P

2�

dF (x;H;L)
de


���
e+
> 0 because F (x;H;L)

is strictly increasing in e(x;L).

Therefore, a contradiction can constructed if F (x+; L;H) < F+ � F (x+; H;L) as

follows: there exists " > 0 such that e0 with e0
 = e+
 + " 8
 2 � satis�es (68)-(72)
because e+L;1 � e+L;0 � e+H;0 � e+H;1 < 1 by (68)-(70). Additionally,

F (x0; L;H) < F0 = F+ � F (x+; H;L) < F (x0; H;L)

which implies e0 supports truth-reporting and is strictly more e¢ cient than e+.

Rewrite (73) and (74) as

(p� q)e(x;L)e(x;H) + qe(x;L) + (qeL;0 � peL;1)e(x;H)� qeL;0 = 0 (77)

(p� q)(e(x;H))2 + [(qeH;0 � peH;1) + q]e(x;H)� qeH;0 = 0. (78)

Totally di¤erentiating (77) and (78) gives

A

"
de(x;L)

de(x;H)

#
=

"
q(1� e(x;H)) pe(x;H) 0 0

0 0 q(1� e(x;H)) pe(x;H)

#266664
deL;0

deL;1

deH;0

deH;1

377775 (79)

where

A =

"
(p� q)e(x;H) + q (p� q)e(x;L) + (qeL;0 � peL;1)

0 2(p� q)e(x;H) + (qeH;0 � peH;1) + q

#
.
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Let deL;0 = deL;1 = deH;0 = deH;1 = " > 0. By (79), I have

A

"
de(x;L)

de(x;H)

#
=

"
q(1� e(x;H)) + pe(x;H)

q(1� e(x;H)) + pe(x;H)

#
" (80)

which implies

de(x;L)je+ =
A22 � A12
A11A22

[q(1� e(x;H)) + pe(x;H)]"

����
e+
.

Furthermore,

A11je+ = (p� q)e(x+;H) + q > 0

A22je+ = 2(p� q)e(x+;H) + (qe+H;0 � pe+H;1) + q = (p� q)e(x+;H) +
qe+H;0

e(x+;H)
> 0

by (78) and

A22 � A12je+
=2(p� q)e(x+;H) + (qe+H;0 � pe+H;1) + q � (p� q)e(x+;L)� (qe+L;0 � pe+L;1)

> (p� q)e(x+;H) + (qe+H;0 � pe+H;1) + q � (qe+L;0 � pe+L;1)

=
qe+H;0

e(x+;H)
� (qe+L;0 � pe+L;1)

� q(e+H;0 � e+L;0) + pe+L;1 � 0

where the �rst inequality follows

e(x+;L) = e+L;0 + (e
+
L;1 � e+L;0)x

+ < e+H;0 + (e
+
H;1 � e+H;0)x

+ = e(x+;H)

because e+L;0 � e+H;0 by (69) and e
+
L;1 � e+L;0 < e+H;1 � e+H;0 by the fact e

+ is belief-

based and x+ 2 (0; 1) by Proposition 11, the second equality follows (78), the second
inequality follows e(x+;H) � 1, the last inequality follows (69).
So de(x;L)je+ > 0 for deL;0 = deL;1 = deH;0 = deH;1 = " > 0 which impliesP

2�

de(x;L)
de


���
e+
> 0.

Step 3: If F+ < F (x+; H;L), then e+H;0 = e+H;1 which will be considered in Case

2 below.

I show dF
deL;1

� 1�p
p

dF
deH;1

���
e+
> 0 (by algebra) and de(x;H)

deL;1
� 1�p

p
de(x;H)
deH;1

���
e+
< 0. There-

fore, a contradiction can be constructed if F+ < F (x+; H;L) and e+H;0 < e+H;1 as

follows: there exists " > 0 such that e0 =
�
e+L;0 e

+
L;1 + " e+H;0 e

+
H;1 �

1�p
p
"
�
satis�es

(68)-(72) because (68) does not bind at e+ by Proposition 11 and (71) does not bind
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at e+ by assumption. Additionally,

F (x0; L;H) < F (x+; L;H) = F+ < F0 < F (x0; H;L)

which implies e0 supports truth-reporting and is as e¢ cient as e+ because e00 = e+0 and

e01 = e+1 by construction. But since both constraints have been relaxed, a strictly more

e¢ cient decision function supporting truth-reporting can be constructed accordingly.

Let deL;0 = deH;0 = 0, deL;1 = " and deH;1 = �1�p
p
" for " > 0. By (79), I have

A

"
de(x;L)

de(x;H)

#
=

"
pe(x;H)

�(1� p)e(x;H)

#
" (81)

which implies

de(x;H)je+ = �(1� p)e(x;H)

A22
"

����
e+
< 0

because A22je+ > 0 as proven in Step 2.
Case 2: Suppose e+H;0 � e+H;1. Hence,

e+ 2 argmax
eL;0;eL;1;eH;0;eH;1

�
e0

1� (e1 � e0)

�
subject to

(1�F (x; L;�))(eH;0�eL;0)+F (x; L;�)(eH;1�eL;1) � y 8� 2 � and x 2 fx; xg (82)

(1�F (x;H;�))(eH;0�eL;0)+F (x;H;�)(eH;1�eL;1) � y 8� 2 � and x 2 fx; xg (83)

eL;0 � eL;1 (84)

eL;0 � eH;0 (85)

eH;0 � eH;1 (86)

eH;0 � eL;0 � eH;1 � eL;1 (87)

eL;0; eL;1; eH;0; eH;1 2 [0; 1] (88)

where fx; xg solve
x = F (x; L;L) (89)

x = F (x;H;H). (90)

Notice (82) and (83) are no pro�table one-shot deviations conditions as usual, (84)

follows Theorem 1.3, (85) follows e+L;0 � e+H;0, (86) is imposed by assumption and
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(87) follows Proposition 1.5. Furthermore, given (84)-(87), (89) and (90) follow (a)

in Proposition 1.9.

Step 1: Since e+ is strictly more e¢ cient than the optimal belief-free decision
function e�, (87) does not bind which implies (82) and (83) can be rewritten as

F (x; L;�) � F � F (x;H;�) 8� 2 � and x 2 fx; xg. (91)

Furthermore, I have

F (x; L;H) � F (x; L;L) and F (x; L;H) � F (x; L;H) � F (x; L;L)

F (x;H;L) � F (x;H;H) and F (x;H;L) � F (x;H;L) � F (x;H;H)

by (84)-(87) and x � x. So (91) can be further simpli�ed as

F (x; L;H) � F � F (x;H;L). (92)

Notice Proposition 13 follows if both constraints in (92) bind.

Step 2: F (x+; L;H) = F+.
I show

P

2�

de(x;L)
de


���
e+
> 0 which implies

P

2�

dF (x;H;L)
de


���
e+
> 0 because F (x;H;L)

is strictly increasing in e(x;L). Therefore, a contradiction can be constructed if

F (x+; L;H) < F+ as follows: there exists " > 0 such that e0 with e0
 = e+
 + "

8
 2 � satis�es (84)-(88). (Here, I implicitly assume e+H;0 < 1. Otherwise, I have

e+H;0 = 1 > e+H;1 so that e
0 = (e+L;0 e

+
L;1+ " e

+
H;0 e

+
H;1+ ") for some " > 0 works similarly

because I can show dF
deL;1

+ dF
deH;1

���
e+
< 0 and de(x;L)

deL;1
+ de(x;L)

deH;1

���
e+
> 0 which are left for

the readers.) Additionally,

F (x0; L;H) < F0 = F+ � F (x+; H;L) < F (x0; H;L)

which implies e0 supports truth-reporting and is strictly more e¢ cient than e+.

Rewrite (89) and (90) as

(p� q)e(x;L)e(x;H) + qe(x;L) + (qeL;0 � peL;1)e(x;H)� qeL;0 = 0 (93)

�(p�q)e(x;L)e(x;H)+[(1�q)eH;0�(1�p)eH;1]e(x;L)+(1�q)e(x;H)�(1�q)eH;0 = 0.
(94)
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Totally di¤erentiating (93) and (94) gives

A

"
de(x;L)

de(x;H)

#
=

"
q(1� e(x;H)) pe(x;H) 0 0

0 0 (1� q)(1� e(x;L)) (1� p)e(x;L)

#266664
deL;0

deL;1

deH;0

deH;1

377775
(95)

where

A =

"
(p� q)e(x;H) + q (p� q)e(x;L) + (qeL;0 � peL;1)

�(p� q)e(x;H) + [(1� q)eH;0 � (1� p)eH;1] �(p� q)e(x;L) + (1� q)

#
.

Let deL;0 = deL;1 = deH;0 = deH;1 = " > 0. By (95), I have

A

"
de(x;L)

de(x;H)

#
=

"
(p� q)e(x;H) + q

�(p� q)e(x;L) + (1� q)

#
" (96)

which implies

de(x;L)je+

=
[�(p� q)e(x;L) + (1� q)][(p� q)e(x;H) + q � (p� q)e(x;L)� (qeL;0 � peL;1)]

kAk "

����
e+

where the numerator evaluated at e+ is strictly positive given e(x+;L) < e(x+;H) so

that it su¢ ces to show kAkje+ > 0. Furthermore, I have

A11je+ ; A12je+ ; A22je+ > 0, A21je+ � 0, A11je+ > A12je+ and A22je+ > A21je+

so that kAkje+ = A11je+ A22je+ � A12je+ A21je+ > 0.
Step 3: F+ = F (x+; H;L).

I show dF
deL;1

� 1�p
p

dF
deH;1

���
e+
> 0 (by algebra) and de(x;H)

deL;1
� 1�p

p
de(x;H)
deH;1

���
e+
< 0. There-

fore, a contradiction can be constructed if F+ < F (x+; H;L) as follows: there exists

" > 0 such that e0 =
�
e+L;0 e

+
L;1 + " e+H;0 e

+
H;1 �

1�p
p
"
�
satis�es (68)-(72) because (84)

and (87) do not bind at e+. Additionally,

F (x0; L;H) < F (x+; L;H) = F+ < F0 < F (x0; H;L)

which implies e0 supports truth-reporting and is as e¢ cient as e+ because e00 = e+0 and

e01 = e+1 by construction. But since both constraints have been relaxed, a strictly more

e¢ cient decision function supporting truth-reporting can be constructed accordingly.
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Let deL;0 = deH;0 = 0, deL;1 = " and deH;1 = �1�p
p
" for " > 0. By (95), I have

A

"
de(x;L)

de(x;H)

#
=

"
pe(x;H)

� (1�p)2
p

e(x;L)

#
" (97)

which implies

de(x;H)je+ = �
pe(x;H)A21 +

(1�p)2
p

e(x;L)A11

kAk "

�����
e+

.

Since A11je+ > 0,

A21je+
=�(p� q)e(x+;H) + (1� q)e+H;0 � (1� p)e+H;1 � �(p� q)e(x+;H) + (p� q)e+H;0 > 0

by e+H;0 � e+H;1 and kAkje+ > 0 as proven in Step 2, de(x;H)je+ < 0.
This completes the proof.

1.5.16 Proof of Lemma 1.3

Given F+ 2 (0; 1), I can solve for e(x+;L) and e(x+;L) as

e(x+;L) =
qF+

�(p� q)F+ + p
and e(x+;H) =

(1� q)F+

(p� q)F+ + (1� p)

by F (x+; L;H) = F+ = F (x+; H;L) as proved in Theorem 1.4. Taking F+, e(x+;L)

and e(x+;H) as given, let�s consider the set of the decision functions satisfying (93),

(94) and
y � (eH;0 � eL;0)

(eH;1 � eL;1)� (eH;0 � eL;0)
= F+.

Notice each decision function in this set supports truth-reporting if it satis�es (84)-

(88) as well. Rewriting these three equations gives

A

264 eL;1eH;0

eH;1

375 = BeL;0 + C

where

A =

264 �pe(x+;H) 0 0

0 �(1� q)(1� e(x+;L)) �(1� p)e(x+;L)

��(1� p)y + (1� �)F+ �qy � (1� �)(1� F+) ��py � (1� �)F+

375
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B =

264 q(1� e(x+;H))

0

�[�(1� q)y + (1� �)(1� F+)]

375

C =

264 �[q + p(1� q)]e(x+;L) + q(1� p)e(x+;H)

p(1� q)e(x+;L)� [(1� q) + q(1� p)]e(x+;H)

�y

375 .
By algebra, I have2664

deL;1
deL;0
deH;0
deL;0
deH;1
deL;0

3775 = A�1B =

2664
� q(1�p)(1�F+)

p(1�q)F+

� q(1�p)
p(1�q)

�q(1�p)2y(1�F+)+�p(1�q)2yF++(1��)(p�q)(1�F+)F+
�p2(1�q)y(1�F+)+�q2(1�p)yF++(1��)(p�q)(1�F+)F+

1�F+
F+

�q(1�p)2y(1�F+)+�p(1�q)2yF++(1��)(p�q)(1�F+)F+
�p2(1�q)y(1�F+)+�q2(1�p)yF++(1��)(p�q)(1�F+)F+

3775
which implies

deL;1
deL;0

< 0,
deH;0
deL;0

< 0 and
deH;1
deL;0

> 0.

Furthermore, let deL;0 = " > 0, I have

de0

=
1� F+
p(1� q)

�[p3(1� q)3 � q3(1� p)3]y + (1� �)(p� q)[p(1� q)2 � q2(1� p)]F+

�p2(1� q)y(1� F+) + �q2(1� p)yF+ + (1� �)(p� q)(1� F+)F+ "

de1

=
1� F+
p(1� q)

�[p3(1� q)3 � q3(1� p)3]y + (1� �)(p� q)[p2(1� q)� q(1� p)2](1� F+)
�p2(1� q)y(1� F+) + �q2(1� p)yF+ + (1� �)(p� q)(1� F+)F+ "

where de0 = (1� q)deL;0 + qdeH;0 and de1 = (1� p)deL;1 + pdeH;1. Hence,

de0
deL;0

> 0 and
de1
deL;0

> 0.

Therefore, a contradiction can be constructed if none of these three statements is

true as follows: there exists " > 0 such that e0 with e0
 = e+
 +
de

deL;0

" 8
 2 � supports
truth-reporting and is strictly more e¢ cient than e+ because e00 > e+0 and e

0
1 > e+1 .

This completes the proof.

1.5.17 Proof of Proposition 1.10

It su¢ ces to prove that given any SE with respect to w�� in which the principal�s

strategy features truth-reporting, there exist e; eL;0; eL;1; eH;0; eH;1 2 [0; 1] such that
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(32)-(34) and

(1� e)(1� q)

(1� e)(1� q) + e(1� p)
eL;0 +

e(1� p)

(1� e)(1� q) + e(1� p)
eL;1

(1� e)q

(1� e)q + ep
eH;0 +

ep

(1� e)q + ep
eH;1

are the NED probabilities of the agent exerting e¤ort in some SE with respect to w��

in which the principal�s strategy features truth-reporting.

Suppose (e; r) is a SE with respect to w�� with the principal�s truth-reporting.

De�ne

e = e(;)

e
 = (1� �)E1

" 1X
t=1

�t�1et

����� s; 

#
8


where e
 is the NED probability of the agent at state 
 at the beginning of period 1

exerting e¤ort so that (32) is satis�ed trivially and (33)-(34) are satis�ed as the no

pro�table one-shot deviations conditions in period 0. Further de�ne the agent�s e¤ort

strategy e0 as a mixed strategy with e j (L; 0) for the probability (1�e0)(1�q)
(1�e0)(1�q)+e0(1�p)

and e j (L; 1) for the probability e0(1�p)
(1�e0)(1�q)+e0(1�p) . I show (e0; r j (L;L)) is a SE

with respect to w�� in which r j (L;L) features truth-reporting. r j (L;L) features
truth-reporting because (L;L) is still on the equilibrium path. No matter what the

agent�s history is, he assigns the probability one to the principal being at state (L;L)

therefore having the continuation strategy r j (L;L). That implies given r j (L;L),
both e j (L; 0) and e j (L; 1) show sequential rationality by De�nition 1. So does

e0 as the mixed strategy. And given the principal�s history (L;L), she assigns the

probability (1�e0)(1�q)
(1�e0)(1�q)+e0(1�p) to the agent being at state (L; 0) therefore having the

continuation strategy e j (L; 0). That implies given e0, r j (L;L) shows sequential
rationality too by De�nition 1. Therefore, the result follows.

A similar argument shows (e00; r j (H;H)) is a SE with respect to w�� in which e00

is a mixed strategy with e j (H; 0) for the probability (1�e0)q
(1�e0)q+e0p and e j (H; 1) for the

probability e0q
(1�e0)q+e0p and r j (H;H) features truth-reporting.

So, I have

(1� �)E0

" 1X
t=0

�tet

����� s
#
2 	[0; 1] � [0; 1]

for any SE (e; r) with respect to w�� with the principal�s truth-reporting. Proposition

10 follows by applying the logic above recursively. Notice the mapping 	 is monotonic

so that 	1([0; 1]) is well-de�ned.
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2 Equilibrium Matching and Termination

by Cheng Wang and Youzhi Yang

2.1 Introduction

In an equilibrium model of the labor market with moral hazard, we combine the

theory of search and matching and the theory of dynamic contracting. Jobs are

dynamic contracts. Equilibrium job separations are terminations of optimal dynamic

contracts. Transitions from unemployment to new jobs are modelled as a process of

matching and bargaining, as in Mortensen and Pissarides (1994). Matched workers

and �rms bargain over the values of the optimal contract to each party, and then

the dynamics of the optimal contract will take them to a state of termination. Non-

employed workers make consumption and saving decisions as in a typical growth

model, but they must also decide whether or not to participate in the labor market.

Firms enter freely into the market to endogenously determine the number of jobs in

the economy.

The standard Mortensen-Pissarides equilibrium matching model of the labor mar-

ket is built around two key assumptions: a matching and bargaining process sets the

worker and �rm pair up for an employment relationship, and a dynamic but exoge-

nous process of match productivity then provides an engine for job separation. An

important extension of the standard equilibrium matching model is Moscarini (2005),

who puts the model of Jovanovic (1979) into the Mortensen-Pissarides framework to

model separation as a process of learning about the productivity of the match, and

allows the match to be dissolved once the perceived match productivity is su¢ ciently

low.

We take a dynamic contract point of view to modelling equilibrium job separation

in the Mortensen-Pissarides model. Workers and �rms enter an optimal dynamic

contract upon a match, and job separation is then modelled as the termination of

the dynamic contract. In our environment of moral hazard, termination is used as

an incentive device to induce worker e¤orts, and as a way of minimizing the cost of

worker compensation. Workers that produce a sequence of bad outputs become too

poor to motivate, and workers who produce a sequence of good outputs become too

expensive to compensate and motivate, as in Spear and Wang (2005) and Sannikov

(2008)[42]. Following a termination, workers are free to go back to the labor market

to seek new matches, or choose to stay temporarily or permanently out of the labor

[42]Sannikov (2008) studies a continuous-time version of the dynamic principal-agent problem with
optimal termination. He also establishes the result that optimal replacement occurs when the agent�s
continuation value is either too low or too high. He then analyzes how optimal termination depends
on the parameters of the contracting environment, including for example the relative time preferences
of the principal and the agent.
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market. This generates equilibrium �ows between employment and unemployment,

�ows from employment to not-in-the-labor-force, and �ows from not-in-the-labor-force

to unemployment.

Thus job separation is a purely endogenous process in our model, motivated by

the dynamic provision of incentives and risk sharing. Workers and �rms are homo-

geneous, and matches are identical: they operate the same production function in all

periods. Termination occurs not because the technology of the match has evolved to

be su¢ ciently poor as in Mortensen and Pissarides (1994), or it is found out to be

su¢ ciently bad as in Moscarini (2005). Termination occurs because the economic re-

lationship that evolved endogenously around the �xed match technology has become

too costly for the parties to maintain.

This strategy we take in modelling the dynamics in the labor market allows us

to determine endogenously and simultaneously the size and composition of all three

states of the labor market: employment, unemployment, and not-in-the-labor-force,

as well as the �ows into and out of not-in-the-labor force. This is important, not only

for the explanation of the economy�s aggregate labor supply, but also necessary for

providing a more coherent and complete view of the stocks and �ows of the labor mar-

ket. Labor market data, especially that in the recently available Current Population

Survey, show signi�cant �ows of workers among all three states of the labor market,

as documented in several recent researches including Fallick and Fleischman (2004),

Nagypal (2005), Shimer (2005b). Yet most existing models in the search-matching

literature of the labor market focus on the interaction between employment and un-

employment (e.g., Mortensen and Pissarides (1997), Shimer (2005), Moscarini (2005),

Nagypal (2005)), without modelling explicitly the state of not-in-the-labor-force and

hence the size of the labor market. Sun-Bin Kim (2001) and Moscarini (2003) are

exceptions. In both papers though, an additional source of worker heterogeneity is

introduced into the Mortensen-Pissarises framework in order to generate �ows into

retirement. In Moscarini (2003) for example, the productivity of a match depends

on a match speci�c variable, as well as a non-match-speci�c variable that captures

the ability of the worker. The values of both variables are learned during a match,

workers whose non-match-speci�c variable is learned to be su¢ ciently low choose to

withdraw from the labor market.

Wang (2005) also models endogenous labor force participation, but without adding

a second source of information friction or worker heterogeneity in addition to the one

that motivates layo¤s and unemployment. He considers a labor market with moral

hazard and shows that, if one allows dynamic contracts to be optimally terminated in

that environment, then terminations are of two types: involuntary layo¤s and perma-

nent retirements. In that paper, unemployment and non-participation are motivated
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by the same information friction, moral hazard, in a clean model environment with

homogeneous workers and matches. Workers who have a sequence of low outputs

become too costly to motivate and are laid o¤; workers who have performed well and

are promised a su¢ ciently high expected utility become too expensive to motivate

and compensate, they then retire permanently from the labor force.

Our approach to modelling the state of non-participation builds on Wang (2005)

but adds an important new dimension: non-employed workers are allowed to make

optimal consumption-saving decisions, and their decision on labor force participation

is based on the amount of assets they hold. We show that a non-employed worker

who holds a su¢ ciently small amount of assets will stay in the labor force after

termination: their value outside the labor market is too low. We also show that a

non-employed worker with a su¢ ciently large amount of saving will choose to quit

the labor force permanently: their opportunity cost of re-entering the labor market is

too high. In the quantitative version of our model that is calibrated to the U.S. data,

there are non-employed workers whose level of wealth is neither su¢ ciently low to

justify immediate returning back to the labor market, nor su¢ ciently high to justify

staying permanently out of the labor market. These workers choose to quit the labor

force temporarily, dissave, and eventually go back to the labor market once their

assets are reduced to a su¢ ciently low level to make them pro�table for the �rms

to employ. Thus our model generates not only �ows into not-in-the-labor-force from

employment, but also �ows out of not-in-the-labor-force. Wang (2005) does not have

equilibrium �ows from non-participation to the labor force, neither does it explicitly

model matching and bargaining in the labor market as we do in this paper.

That non-employed workers are allowed to save also distinguishes our model from

the existing search-matching models. Most existing search-matching models of the

labor market, including Mortensen and Pissarides (1994), do not allow workers to

save. In those models, although employed workers are heterogeneous in the wages

they earn, unemployed workers are homogeneous since they all hold zero amounts of

assets. In our model, there is an equilibrium ergodic distribution of non-employed

workers who di¤er in the amount of assets they hold. These workers make di¤erent

consumption and saving decisions, and di¤erent decisions on labor force participation.

While this endogenous wealth heterogeneity among non-employed workers gives rise

to considerable technical complexities, it is essential to our model�s being able to

generate dynamics from not-in-the-labor-force to unemployment.

An important assumption in the Mortensen-Passarides model is that workers and

�rms cannot commit to long-term relationships, and wages are bargained sequentially

upon realization of the current match productivity. In our model, �rms can fully

commit to any long-term contract, although workers are allowed to quit an ongoing



www.manaraa.com

75

employment relationship if it o¤ers a value lower than the workers�outside alternative.

Bargaining occurs only once, before the employment relationship begins, and is over

the total values of the optimal contract to the parties. Wages are state contingent

compensation payments to the worker that are dictated by the optimal structure of

the optimal contract, not bargained repeatedly each period.

One could allow �rms and workers to enter dynamic contracts and let bargaining

take place only once also in Mortensen and Pissarides (1994). Without private infor-

mation or other types of frictions though, perfect consumption smoothing would imply

a constant wage over the worker�s tenure at the �rm. This in turn would imply a wage

distribution that is essentially identical to the exogenous distribution of the random

match productivity. The assumption of repeated wage bargaining, although help-

ful for generating an ergodic wage distribution in Mortensen and Pissarides (1994),

implies that wages are not su¢ ciently rigid for the model to match business cycle

movements in the data (Hall (2005), Shimer (2005)). Rudanko (2007) models long-

term wage contracts with limited commitment in a search-matching model of the

labor market to produce the observed wage rigidity/volatility. Obviously, our model

o¤ers a potential alternative for accounting for the observed wage rigidity/volatility

that is based on an optimal trade o¤ between consumption smoothing and incentives.

In an important recent study, Hornstein, Krusell and Violante (2006) argue that

standard equilibrium search-matching models can generate only a very small, 3:6%,

di¤erential between the average and the lowest wages paid in the U.S. labor market,

and the observed Mm ratio�the ratio between the average wage and lowest wage paid�

is at least twenty times larger than what the model observes. As the paper explains,

�The short unemployment durations, as in the U.S. data, reveal that agents in the

model do not �nd it worthwhile to wait because frictional wage inequality is tiny. The

message of search theory is that �good things come to those who wait�, so if the wait

is short, it must be that good things are not likely to happen.� (page 9.) The paper

further shows that the extensions of the standard search and matching models can

only modestly improve their performance on accounting for the observed Mm ratio.

Our model is capable of generating much larger wage dispersions than the existing

equilibrium search and matching models. In a quantitative version of our model

that is calibrated to the U.S. data, the computed Mm ratio is 24:5, similar to what

Hornstein, Krusell and Violante observe in the U.S. data. The reason our model is

better in accounting for the observed wage dispersion is clear. In our model, wage

dispersion is driven by the provision of intertemporal incentives and intertemporal

risk sharing. Wages of homogenous workers who start with the same initial expected

utility fan out over time as their outputs follow a stochastic process. In our model,

workers who produce a sequence of high outputs will see their wages increase over time,
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and workers that produce a sequence of low outputs will see their wages decrease over

time. This e¤ect of the dynamic contracting on distribution was �rst discussed in

Green (1987) and Atkeson and Lucas (1991). In this paper, the same mechanism is

put to work in an equilibrium search/matching framework.

The model is presented in the next section. In Sections 2.3 and 2.4 we formulate

and analyze a stationary equilibrium of the model. We then calibrate the model to

the U.S. economy in Section 2.5 to study the structure of the equilibrium dynamic

contract, the stocks and �ows of the labor market, and worker compensation dynamics.

Section 2.6 concludes the paper.

2.2 Setup

Let time be denoted t = 1; 2; � � � The model economy has one consumption good,
and is populated by one unit of homogeneous workers. Workers survive into the next

period with a constant probability � 2 (0; 1). At the beginning of each period, 1��
units of workers are born so the measure of workers in each period is constant at one.

Workers that are born in period �(� 1) have the following preferences:

E�

1X
t=�

(��)t�� [u(ct)� �(at)];

where � 2 (0; 1) is the worker�s discount factor, u : R+ ! R denotes the worker�s
utility function, ct his consumption; � : f0g

S
[a; a] ! R, where a > a � 0, denotes

the worker�s disutility function, at his e¤ort. We make the following assumptions

on u and �: u(�) is bounded, continuous, di¤erentiable, and strictly concave; �(�) is
continuously di¤erentiable, and strictly convex on [a; a].

The model economy is also populated with a large measure of identical �rms.

Firms maximize expected discounted pro�ts, and they discount future pro�ts using a

constant discount factor 1=(1 + r), where r > 0 denotes the interest rate �rms face.

In any given period, some �rms are in the market, the rest not. Firms are allowed to

freely enter or exit the market and so the measure of the �rms that are in the market,


, is an endogenous variable. Firms in the market must be matched with a worker in

order to produce. A matched pair of �rm and worker creates a job.

In any given period, the total measure of matches formed in the labor market is

equal to

M(�A; 
 � �E),

where �A is the measure of the unemployed workers (non-employed and actively look-

ing for a job) in the labor market, and �E is the measure of the workers that are

currently employed when the labor market opens, and hence 
� �E is the measure of
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vacant (recruiting) �rms in the labor market. Throughout the paper, we assume the

matching function is such that

0 �M(�A; 
 � �E) < minf�A; 
 � �Eg,

so there is always a positive measure of workers and �rms that are not matched.

A �rm that fails to �nd a match could either exit the market or to operate as a

vacant �rm in the remainder of the period, waiting for the labor market to open next

period. We follow the literature to assume that a vacant �rm must incur a �xed cost

c0(� 0) in order to stay open to job applications.
The matched �rm and worker Nash bargain over a dynamic employment contract.

This dynamic contract speci�es a history contingent rule for compensating and ter-

minating the worker. Once they agree on a speci�c contract, this contract cannot be

renegotiated in any future periods.

Production then takes place immediately after a contract is agreed on. In each

period, the employed worker produces a random output � 2 f�1; � � �; �ng with proba-
bilities f�1(a); � � �; �n(a)g, where a 2 A � [a; a] is the worker�s e¤ort, �i : A! (0; 1),

and A � R+ is the set of possible e¤ort levels. For all a 2 A, let �(a) =
P

i �i(a)�i.

Assume �
0
(a) =1.

The model�s information structure is the same as that in the standard model of

moral hazard. Speci�cally, the worker�s e¤ort is not observable to the �rm, but the

output he produces is publicly observable and veri�able. Other parameters of the

model are common knowledge to all agents in the model.

There is a risk free asset in the model: for each unit of the good invested in

this asset, it returns (1 + r) units of consumption next period. To avoid introducing

additional information asymmetry, we assume that all investments in this asset are

public information and transferable between workers and �rms. Workers also have

access to a competitive insurance market where one unit of consumption in the current

period can be exchanged for 1=� units of consumption in the next period conditional

on the worker�s survival in the next period.

As part of the model�s physical environment, we make four assumptions about

the contracts that are feasible between the worker and the �rm. First, contracts are

subject to a non-negativity constraint that requires that compensation to the worker

be non-negative. Second, once the worker and the �rm agree on a contract, they

can commit to not renegotiating the continuations of the contract in all future dates.

Third, �rms can fully commit to the terms of a long-term contract, whereas workers�

commitment to a long-term contract is limited: workers are free to leave an ongoing

long-term contract anytime there is a better outside value. Forth, severance payments
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must be made in lump-sum amounts to the worker immediately upon termination.

Once an employment relationship is terminated, no further interactions between the

�rm and the worker are feasible.

2.3 Equilibrium

In this section, we formulate the economy�s stationary equilibrium. We �rst describe

the economy�s aggregate state variables. We then describe the optimization problems

that workers and �rms face, taking the aggregate states as given. Finally, we require

that the aggregate states and individual optimization be consistent with each other,

and that the �rms in the market be making zero pro�ts.

2.3.1 The aggregate states

At the beginning of each period, the state of the economy is characterized by the

following aggregate state variables

� = f(SA; �A; �A); (SI ; �I ; �I); (X;�E; �E); 
g:

Here, 
 is the measure of �rms in the market. The scalar �A 2 (1 � �; 1) is the
measure of the non-employed workers who are actively looking for employment. These

workers are distributed over the set SA � R+ according to the distribution function
�A : SA ! [0; 1], where SA is the set of possible amounts of assets these workers hold.

The scalar �I 2 (1 � �; 1) is the measure of the non-employed workers who do not
participate in the labor force. These workers are distributed over the set SI � R+
according to the distribution function �I : SI ! [0; 1], where SI is the set of possible

amounts of assets these workers hold. The scalar �E 2 (0; 1) denotes the the measure
of workers that are employed at the beginning of a period. Finally, the employed

workers are distributed over

X �
�
u(0)� �(a)

1� ��
;
u(1)� �(0)

1� ��

�
� [Vmin; Vmax);

the set of all possible expected utilities of the employed workers at the beginning of a

period, the distribution function being �E : X ! [0; 1]. Clearly, �A, �I and �E must

satisfy

�E + �A + �I = 1:
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2.3.2 Optimization

Conditional on �, an optimal solution to the �rm�s and the worker�s optimization

problems is a duple

� �

8>><>>:

(V ); a(V ); [ci(V ); Vi(V )]

n
i=1; V 2 �

U ;U(V ); V 2 �
v(s); s 2 R+;Vm(s); s 2 SA; Vn(s); s 2 R+

9>>=>>;
where the variables in � are de�ned through (i)-(v) in the following.

(i) The tuple f
(V ); a(V ); [ci(V ); Vi(V )]ni=1; V 2 �g is the dynamic contract for
the currently employed worker. Here we follow Green (1987) and Spear and Srivastava

(1987) to use the worker�s beginning of period expected utility as a state variable to

summarize the worker�s history at the �rm. The set � � X is the state space. This

is the set of all expected utilities of the employed worker that can be delivered by

a (sub-game perfect) feasible and incentive compatible contract. Note that � is an

endogenous variable of the model. Then, for all V 2 �, a(V ) denotes the worker�s
recommended e¤ort in the current period, 
(V ) denotes the set of worker�s output

realizations in which the worker is retained, and outside which the worker is termi-

nated. Finally, ci(V ) and Vi(V ) are, respectively, the worker�s current compensation

(consumption) and next period utility if his current output is �i.

(ii) For all V 2 �, U(V ) 2 R denotes the value of a �rm who currently employs

a worker with expected utility V . U 2 R is the value of a vacant �rm: a �rm that is

free to hire a new worker at the beginning of a period, before the market opens.

(iii) The set SA � R+ denotes the set of assets of the non-employed workers who
choose to participate in the current labor market, and the set SI = R+=SA denotes
the set of assets of the non-employed workers who do not participate in the current

labor market. Note that a non-employed worker could choose to stay out of the labor

market for a number of periods and then re-enter. The scalars �A and �I denote,

respectively, the numbers of the non-employed workers that belong to the sets SA and

SI , respectively. We have �A+�I = �N . Finally, �A : SA ! [0; 1] and �I : SI ! [0; 1],

respectively, are the distributions of the non-employed workers who are in the labor

market and those who are not.

(iv) For any given s 2 R+, v(s) 2 R denotes the maximized value of the beginning-
of-period (before the labor market opens) expected utility of an non-employed worker

with assets s; Vn(s) denotes the ex-post expected utility of this worker conditional on

his not being matched with a �rm (either he chose not to participate in the market

(s 2 SI), or he went to the market (s 2 SA) but failed to �nd a match); Finally, Vm(s)
denotes the bargained expected utility of the worker conditional on (a) he chose to
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go to the market (i:e:; s 2 SA) and (b) he is matched with a �rm.
Let � denote the fraction of the vacant �rms to obtain a match in the period:

� =
M(�A; 
 � �E)


 � �E
. (98)

Let � denote the fraction of unemployed workers to transition to employment (ratio

of hiring out of the pool of the unemployed):

� =
M(�A; 
 � �E)

�A
. (99)

The restriction we put on the matching functionM in Section 2 ensures 0 < �; � < 1.

De�nition 2.1 We say that � is an optimal solution to the �rm and the worker�s

optimization problem, conditional upon a given set of the market�s states � and the

implied � and �, if it satis�es the following conditions (I) to (IV).

Condition (I)

U = �

Z
SA

(U(Vm(s)) + s)d�A(s) + (1� �)
1

1 + r
U � c0 (100)

Condition (II) For all V 2 �,

U(V )= max
f
;a;ci;Vig

X
i62


�i(a)

�
�i � ci +

�

1 + r

�
U � v�1(Vi)

��
+
X
i2


�i(a)

�
�i � ci +

�

1 + r
U(Vi)

�
+
1��
1 + r

U (101)

subject to (102)-(106) where

V =

nX
i=1

�i(a)[u(ci) + ��Vi]� �(a) (102)

a = argmax
a02A

�
nP
i=1

�i(a
0)[u(ci) + ��Vi]� �(a0)

�
(103)


 � �; (104)

ci � 0; 8i (105)

Vi 2 �; 8i 2 
 (106)
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Vi 2 v(R+); 8i 62 
 (107)

Vi � v(0); 8i (108)

where the function v : R+ ! R, its inverse v�1, which is to be shown to exist later in
the paper, and the value of v(0), will be given in Condition (IV);

Condition (III) The set � of all expected utilities for an employed worker that can be
generated by a feasible and incentive compatible contract is the largest self-generating

set of the mapping B : 2X ! 2X de�ned by: 8�0 � X,

B(�0) � fV 2 Xj9f
; a; ci; Vig s:t: (102)� (105); (107); (108); and Vi 2 �0 8i 2 
g:
(109)

Condition (IV) The non-employed-worker�s problem about whether to enter the labor
market and the related values are described by

SA �
�
s 2 R+ : 9V 2 �; V � Vn(s) such that U(V ) + s � 1

1 + r
U

�
; (110)

SI � R+�SA (111)

where

Vn(s) = max
0�c�s

�
u(c)� �(0) + ��v

�
1 + r

�
(s� c)

��
8s 2 [0;+1); (112)

Vm(s) = arg max
V 2�;V�Vn(s);U(V )+s� 1

1+r
U�0

�
U(V ) + s� 1

1 + r
U

�!
(V�Vn(s))1�!; 8s 2 SA

(113)

8s 2 R+, v(s) =
(
�Vm(s) + (1� �)Vn(s) , if s 2 SA

Vn(s) , if s 2 SI
. (114)

Conditions (I)-(IV) formulate a set of Bellman equations for the values of the �rms

and the workers, along with the optimal strategies.

Condition (I) gives the value of a vacant �rm at the beginning of a period. With

probability � this vacant �rm is matched with an unemployed worker with assets s

who is drawn randomly from the distribution �A. Once matched, the worker gives

his assets s to the �rm, and the �rm gives the worker an employment contract that

promises the worker expected utility Vm(s). This Vm(s) is the solution to the Nash

bargaining problem to be formulated in equation (113).

Implicitly in equation (4) is the assumption that assets are freely transferable be-

tween the worker and the �rm. Suppose assets are not freely transferable. Suppose for
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example assets could not be transferred at all between the worker and the �rm. Then

an additional state variable will be needed for recursively formulating the dynamic

contract. We leave this possibility for future work.

Condition (II) gives the optimal dynamic contract between an employed worker

and the �rm, along with the value of the �rm as a function of the worker�s expected

utility. In equation (5), v�1(Vi) is the cost to the �rm of letting the worker leave the

�rm with a promised utility equal to Vi. Here v�1 is the inverse of the worker�s value

function v which, in turn, is de�ned in equation (18). That is, in order to guarantee

that the worker obtains a level of expected utility equal to Vi, the �rm must make

a severance payment to the worker in the amount v�1(Vi). Note that at this stage,

it is not clear whether the inverse function v�1, and the function Vm in equation (4)

are well de�ned. In the next section, we will show that the function v is indeed well

de�ned, continuous, and strictly increasing over its domain R+, and hence its inverse
exists and is monotonic. We will also show that Vm(s) is well de�ned for each s 2 SA.
Since each worker dies with probability (1 � �), the �rm faces in each period a

constant probability of (1��) to become vacant next period.
Constraint (6) is promise-keeping. Constraint (7) is incentive compatibility. Equa-

tion (8) says that the contract can terminate in any chosen subset of the worker�s

outputs. Equation (9) requires the worker�s compensation to be non-negative: the

limited liability constraint.

Constraints (106) and (107) require that the expected utility Vi promised to the

worker be feasible. Speci�cally, if the worker is retained, then the promised utility

must be achievable by a sub-game perfect feasible and incentive compatible contract;

if the worker is terminated, then the expected utility the worker receives must be

supportable by a feasible severance payment s.

Equation (12) is a self-enforcing constraint. Under this constraint, the worker will

not have an incentive to leave the contract in all ex post states of the world. This

constraint is not needed if we assume full commitment.

Condition (III) provides a Bellman equation for the state space of the dynamic

contract. This follows Abreu, Pearce and Stachetti (1990) and Wang (1997).

Equation (14) de�nes the set of non-employed workers that are in the market, SA.

The condition it imposes on all s 2 SA say that, in order for a non-employed worker
to be willing to participate in the labor force, there must exist a feasible and incentive

compatible contract to make the worker and the �rm both better o¤ should they form

a match.

Equation (16) describes the optimization problem for the non-employed worker

who is not matched with a �rm, either he was in the market but failed to form a

match, or he chose not to participate in the labor market. The problem for this
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worker, which is the same as that for the consumer in a typical growth model, is one

of �nding the optimal consumption and saving scheme.

Equation (17) lays out the problem of Nash bargaining between a worker and a

�rm who are matched. The parameter ! 2 (0; 1) is the exogenously given bargaining
weight for the �rm. Since in each period each �rm and each worker can �nd at most

one match, U=(1 + r) is the �rm�s reservation utility, and Vn(s) is the worker�s. The

bargaining game here thus involves choosing a level of the expected utility V in the

set � of attainable expected utilities to give to the worker, and this expected utility

exceeds the worker�s reservation utility, makes the �rm better o¤ than its reservation

utility, and maximizes the Nash product of surpluses.

Note that implicit in Equation (17) is the assumption that (a) the Nash bargaining

problem has a solution and (b) the solution is unique. Proposition 2.2 in the next

section will verify that this assumption is satis�ed.

Finally, equation (18) describes the non-employed worker�s decision about whether

or not to participate in the current labor market. Note that since the worker does

not incur any costs being in the labor market, we make the assumption that workers

choose to participate in the labor market if and only if they could with a match

that o¤ers an expected utility that is higher than Vn(s). Workers who have a zero

probability to be hired will voluntarily stay out of the labor market.

2.3.3 Equilibrium

De�nition 2.2 A stationary equilibrium of the model is a tuple f�; �; �; �g that sat-
is�es the following conditions:

(i) � and � are given by (98) and (99).

(ii) Conditional on �, � and �, � solves the worker and the �rm�s optimization

problems that are de�ned by Conditions (I)-(IV) in De�nition 1.

(iii) � is generated by � and is stationary.

(iv) Free entry of �rms into the market ensures

U = 0:

2.4 Analysis

In this section, we analyze the Bellman equations in De�nition 1 that jointly charac-

terize the worker and the �rm�s optimization problems. We begin with a set of useful

observations. Observe �rst that

Vm(s) � v(s) � Vn(s); 8s 2 SA: (115)
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This holds because the de�nitions of SA and Vm(s) imply Vm(s) � Vn(s) and that

v(s) is a convex combination of Vm(s) and Vn(s) for all s 2 SA. Notice next that

Vn(0) = u(0)� �(a) + ��v(0):

Notice also that

v(0) � Vmin:

This holds because the non-employed worker with s = 0 can always choose to stay

out of the labor market permanently to obtain Vmin. Notice therefore

v(0) � Vn(0) = u(0)� �(a) + ��v(0) � Vmin: (116)

Assumption 1 u(1)� u(0) � ��[�(a)� �(0)].

This assumption is not di¢ cult to satisfy. A su¢ cient condition for it to hold is

u(1)� �(a) � u(0)� �(0). That is, the worker is better o¤ working and having an

in�nite amount of consumption than not working and not consuming. But we need

Assumption 1 to show that the set � is an interval.

Proposition 2.1 � =
h
Vn(0);

u(1)��(a)
1���

�
:

Remember Vn(0) = u(0)� �(a) + ��v(0) is the expected utility of a worker who

is not matched with a �rm and has zero assets.

Assumption 2 The value function U : �! R is continuous and concave.

This assumption is reasonable, for the continuity and concavity of U could always

be obtained through randomization over employment contracts if necessary. See Athey

and Bagwell (2001).

Notice that U(V ) ! �1 as V ! [u(1) � �(0)]=(1 � ��). This holds because,

independent of the contract used, the expected pro�ts of a �rm are bounded from

above while the cost of delivering V to the worker goes to in�nity as V goes to

[u(1)� �(0)]=(1� ��). With this and Assumption 1, let

V � = max

�
V 0 : V 0 2 argmax

V 2�
U(V )

�
:

This V � exists, is unique, and has the following interpretation: If the �rm is free to

o¤er any expected utility from � to a newly hired worker with assets s = 0, V � is the

starting expected utility to promise to the worker at which the �rm can achieve its

maximum value, U(V �).

Notice that V � may not be equal to the bargained expected utility Vm(0), although

it does always hold that V � � Vm(0). Suppose V � > Vm(0). Then by letting Vm(0) =
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V � the worker is strictly better o¤ and the �rm is weakly better o¤. Notice next that

since V � is taken from the set �, and from Proposition 2.1 Vn(0) is the minimum

element in �, it holds automatically that V � � Vn(0). Moreover, with the assumption

that �
0
(0) =1, this inequality must hold strictly, that is,

V � > Vn(0):

In other words, the �rm would start a new worker that has zero assets with an

expected utility that is strictly greater than his reservation expected utility. To see

this, suppose V� = Vn(0): Then the optimal contract entails that the worker�s e¤ort

is the minimum a and his compensation is 0, for otherwise his expected utility would

strictly exceed Vn(0). But this is not optimal given �
0(a) < �

0
(0) =1.

We now proceed to provide an analysis of the non-employed worker�s problem that

is de�ned by Condition (V) in De�nition 1. If analysis will be partial, in the sense

that we will take the vacant �rm�s value U and the non-vacant �rm�s value function

U(�) as given and seek to characterize the value functions v(�), Vn(�), and Vm(�).
Notice that the function v(�) plays a central role in de�ning the �rm and worker�s

optimization problems. First, v(�) provides a link between the �rm�s optimization
problem [equations (4)-(13)] and the worker�s problem [equations (14)-(18)]. Second,

as we will show, if v(�) is well de�ned and continuous, then the worker�s other value
functions Vn(�) and Vm(�) are also well de�ned and continuous. Given this, the strategy
of our analysis is to formulate the function v(�) as a �xed point of a contraction
mapping on a space of bounded and continuous function, and then use the contraction

mapping theorem to obtain that v(�) is uniquely de�ned and continuous[43].
Assumption 3 There exists a feasible and incentive compatible one-period contract
�0 that o¤ers the worker expected utility V0 � u(0) � �(0) and the �rm expected

pro�t �(V0) > 0.

Proposition 2.2 Given the vacant �rm�s value U and non-vacant �rm�s value func-

tion U(V ); V 2 �, the following holds for the non-employed worker. (i) The non-
employed worker�s value function v(�) is well de�ned, continuous, and strictly in-
creasing in R+: (ii) The non-matched worker�s value function Vn(�) is well de�ned,
continuous, and strictly increasing on R+; (iii) The matched worker�s value function
Vm is well de�ned, continuous, and weakly increasing on SA;

[43]A full analysis of the �rm and worker�s optimization problem (as de�ned in De�nition 1) would
require characterizing the value functions U; U(�) and v(�) simultaneously in a uni�ed �xed point
argument. A di¢ culty is that the function U(�) is not bounded so the contraction mapping theorem
could not be applied for the proof of existence.
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We also have

v(R+) = [v(0); Vmax):

With this, and given (116), we have

[v(0); Vmax) � �;

and we can rewrite constraints (106)-(108) as

Vi 2 [v(0); Vmax):

This leads to

Proposition 2.3 With the optimal contract, i 2 
 if and if U(Vi) > U � v�1(Vi)

This result is intuitive, it says that the worker is retained if the value of retention

is greater than the value of termination. Notice that since in equilibrium U = 0, the

above proposition permits the �rm to retain a worker that has a negative value to the

�rm, as long as the value of terminating him is even lower.

Proposition 2.4 Suppose a newly-terminated worker with expected utility V goes

back to the labor market immediately [i:e:; v�1(V ) 2 SA]. Then either U > 0, or there

exists V 0 2 � such that V 0 > V and U(V 0) > U(V ).

Given that U(V ) is concave, in equilibrium with U = 0, in order for a worker

to go back to the labor market immediately after termination, his expected utility

must be su¢ ciently low, lower than V �. In other words, a newly terminated worker

is unemployed if he is terminated from the left hand side of the �rm�s value function.

Worker who are terminated from the right hand side of the �rm�s value function will

stay out of the labor force for at least one period.

Consider the set of the promised expected utilities of the worker upon which the

worker is retained. Then for each V in this set, consider the amount of assets v�1(V )

the worker would receive if the worker were terminated. Let

b
 � fv�1(V )jV 2 [v(0); Vmax); U(V ) > U � v�1(V )g:

Next, let

b
A � fv�1(V )jV 2 [v(0); V�); U(V ) < U � v�1(V )g;

b
I � fv�1(V )jV 2 [V�; Vmax); U(V ) < U � v�1(V )g:
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Each element in b
A (b
I) is a level of assets that corresponds to a level of utility V
at which the worker is terminated from the left (right) hand side of the �rm�s value

function. The following proposition establishes the connection between the �rm�s

decision about when to terminate the worker and the worker�s decision about when

to enter the labor market.

Proposition 2.5 In equilibrium it holds that SA = b
AS b
 and SI = b
I .
Proposition 2.6 There exists s > 0 such that [0; s] � SA. Moreover, if a = 0, then

[0; v�1(V �)] � SA.

So a non-employer worker must be unemployed if he is su¢ ciently poor. This is

intuitive, for his value of staying out of the labor force is lower given his small s.

Assumption 3 There exists V such that the following inequality holds for all V � V .

� � (1� ��)U � u�1[(1� ��)V + �(a)]� u�1[(1� ��)V ]:

Assumption 3 is easily satis�ed. Notice that since u(�) is concave, u�1(�) is convex,
and u�1[(1� ��)V + �(a)]� u�1[(1� ��)V ] is increasing in V .

Proposition 2.7 Under Assumption 3, the set b
 is bounded. Or equivalently, there
exists V > v(0) such that for all V � V , U(V ) < U � v�1(V ).

This proposition says that a worker cannot be employed with a level of expected

utility that is su¢ ciently high: he would have been terminated. In fact, by Proposition

2.8, a non-employed worker with a su¢ ciently high V will choose not to be in the

labor market.

Among workers that choose not to participate in the labor force currently, there

are those who have chosen to quit the labor force permanently, and those who are just

temporarily out of the labor force. Our next proposition shows that non-employed

workers who are rich enough, with a large enough s, will choose to retire permanently

from the labor market.

Proposition 2.8 Assume � = 1
1+r
. Then there exists s� < 1 such that the non-

employed worker will choose to stay out of the labor force permanently if s � s�.

We therefore have the following expression for a part of the function v(�):

v(s) =
u(1+r

�
s)� �(0)

1� ��
; 8s � s�:
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2.5 Quantitative Analysis

In this section, we calibrate our model to the U.S. data, analyze it numerically, and

show that our model could do a better job accounting for the observed wage dispersion

than standard search/matching models.

2.5.1 Parameterization and Calibration

We set the time period to be one month. We set the discount rate to be r = 0:00417

to obtain an annual interest rate of 5%. We then set the worker�s discount factor to

be � = 1=(1 + r). We set � = 0:99815 so the worker�s expected lifetime is 45 years.

We set the worker�s utility function to be

u(c)� �(a) = log(�0 + �1c)� a2;

where �0 is normalized to 1 and �1 > 0.

We set n = 2 so output can be low (�1) or high (�2). We assume

�1(a) = exp(� a); �2(a) = 1� exp(� a); 8a � 0;

where  > 0. We follow the literature to assume a Cobb-Douglas matching function

so that

M(�A; 
 � �E) = �0�A
�(
 � �E)

1��

The above parameterization leaves us with the following parameters for the cali-

bration of the model:

�1; �2; �1;  ; �0; c0; 
:

We target a measure of unemployed workers equal to 0:0342, a measure of employed

workers equal to 0:6336, and a measure of those not in the labor force equal to 0:3320.

These values are derived from The Current Population Survey (CPS) which provides

monthly time series data on employment, unemployment and not-in-the-labor-force,

for the period between January 1994 and December 2003. These target measures

imply an unemployment rate of 5:12%, and a labor force participation rate of 66:78%.

We target a job �nding probability of 28:3%, following Fallick and Fleischman

(2004). We follow the literature to set � = 0:6. The literature reports a value of

� between 0:5 and 0:7 (Blanchard and Diamond (1989), Petrongolo and Pissarides

(2001)).

Davis, Faberman and Haltiwanger (2007) reports a job opening rate of 3:4% for the
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period from December 2000 to January 2005[44]. Using this information, we choose

the value of �0 to generate a job �nding probability (fraction of the unemployed to

�ow into employment) of 28:3%:

�0

�

 � �E
�A

�1�0:6
= �0

�
0:034 � 0:6336

0:0342

�1�0:6
= 0:283

which gives us �0 = 0:3405. In addition, given that

job opening rate =

 � employment
employment

we obtain 
 = 1:034� 0:6338 = 0:6551.
We follow Shimer (2005) to set ! = 0:4 (Hosios 1990). We could alternatively set

! = 0:5 without signi�cantly change the calibration outcome.

We are now left with �ve free parameters �1; �2;  ; �1; c0, and we choose their values

to target 6 (essentially 5) measures of the U.S. data: the measures of employment

(E), unemployment (U), non-participation (N); the rate of �ow from employment

to unemployment, the job �nding probability (rate of �ow from unemployment to

employment), and the job opening rate (vacancies as a fraction of employment).

The following table gives the values of the parameters chosen.

Parameter Value

�1 �0:5000
�2 2:5000

 0:6386

�1 1:2771

c0 0:0096

The following table compares the calibrated model with data.

Variable Data Model

fraction of employment 0:6336 0:6317

fraction of unemployment 0:0342 0:0350

fraction of not in the labor force 0:3320 0:3333

job opening rate 3:4% 3:7%

E to U probability 1:3% 1:26%

U to E probability 28:3% 29:1%

The model does a good job matching the targets. Note that conditional on em-

[44]Their measure is based on the Job Openings and Labor Turnover Survey (JOLTS).
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ployment, which is an independent target to match, the job opening rate essentially

measures the stock of vacancies in the economy.

The U.S. data shows a large �ow from unemployment to not-in-the-labor-force,

re�ecting the movements of discouraged workers, and the movements from unemploy-

ment to education. Our model lacks a channel for the �ow from unemployment to

NLF.

The U.S. data also shows a signi�cant �ow of workers from not-in-the-labor-force

to employment. This re�ects the fact that, in practice, �rms search not only among

workers that are unemployed, but also among workers that are not in the labor force.

This mechanism is missing in our model. In the model, workers must be actively

looking for jobs before being matched with a �rm.

Finally, notice that the �ows from employment to unemployment and from em-

ployment to not-in-the-labor-force are much smaller in the model than in the data.

These are not surprising. In the data, a large fraction of the transitions from em-

ployment to not in the labor force are due to life-cycle reasons, or younger workers

quitting the labor force to obtain higher education. These are not in our model. In

the data, the �ow from not in the labor force to unemployment re�ects perhaps the

movements of the previously discouraged workers and the young workers who enter

the labor market after �nishing education.

2.5.2 Equilibrium

Figure 1 depicts the �rm�s net gains from retaining (rather than terminating) the

worker as a function of the worker�s expected utility. In order to deliver a given level

of expected utility V to the worker, the �rm�s net pro�ts are U(V ) if it retains the

worker and U � v�1(V ) if it terminates the worker, and in equilibrium U = 0. The

value of the di¤erence is shown in Figure 1. Obviously, termination is optimal if and

only the value of V is su¢ ciently small or su¢ ciently large.

Figure 2 depicts the law of motion for the employed worker�s expected utility as

a function of his current output. The worker�s expected utility is higher (lower) next

period if his current is higher (lower) this period.

Figure 4 shows the (deterministic) law of motion for the worker�s assets: st+1� st
as a function of st. There is critical asset level above which the non-employed worker

chooses not to enter the labor market. For su¢ ciently high asset levels, there is not

a non-negative Nash surplus between the worker and the �rm.

The stationary distributions of employed workers and non-employed workers (un-

employed plus not-in-in-the-labor-force) are shown in Figures 5 and 6, respectively.

There is clearly a signi�cant amount of welfare dispersion among the employed work-

ers.
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At each point in time, looking forward each employed worker faces a stochastic

number of periods over which to remain employed. Figure 8 depicts the distribution

of the duration of the current job for a worker with four di¤erent level of starting

expected utilities. Obviously, the worker who has an expected utility that is neither

too low nor too higher will longer on this current job on average.

In equilibrium, a worker who leaves his job with an expected utility above the

upper bound of the retention interval will not go back to the labor market immediately,

a worker who leaves his job with an expected utility below the lower bound of the

retention interval will go back to labor market right away. Hence, the former consists

of the employment to not-in-the-labor-force transition, and the latter consists of the

employment to unemployment transition.

Furthermore, each worker is born without any saving. As a result, his �rst job is

characterized by a contract delivering relatively low expected utility. It takes time for

him to establish a good record, and in turn be promised a relatively high expected

utility.

Figure 9 is based on simulation and shows that the probability to transition from

employment to unemployment decreases with the age of the worker, while the prob-

ability to transition from employment to not-in-the-labor-force is increasing with the

age of the worker. These are consistent with �ndings in Nagypal (2005)[45].

2.5.3 Wage Dispersion

Hornstein, Krusell and Violante (2006) show that standard search matching models

can generate only a very small, 3:6%, di¤erential between the average wage and the

lowest wage paid in the labor market, whereas the observed Mm ratio�the ratio be-

tween the average wage and lowest wage paid�is at least twenty times larger than

what the model observes. Hornstein, Krusell and Violante further show that the ex-

tensions to the standard search and matching models can only modestly improve their

performance on accounting for the observed Mm ratio. As HKV argue, the logic of

the search/matching model implies that a higher wage dispersion is associated with

longer unemployment durations or a smaller probability of �nding employment for

the unemployed. Given that unemployment durations are typically short in the data,

wage dispersion cannot be large in the model[46].

This logic of the search/matching model does not apply in our model. In our

model, wage dispersion is driven by the provision of intertemporal incentives and

[45]In Nagypal (2005), the probability to transition from employment to not-in-the-labor-force for
younger workers is unusually high which might be explained by the higher education admission.
[46]As the paper explains, �The short unemployment durations, as in the U.S. data, reveal that
agents in the model do not �nd it worthwhile to wait because frictional wage inequality is tiny. The
message of search theory is that �good things come to those who wait�, so if the wait is short, it
must be that good things are not likely to happen.�(page 9.)
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risk sharing. Wages of homogenous workers who start with the same initial expected

utility fan out over time as their outputs follow a stochastic process. In our model,

workers who produce a high output not only receive a higher wage in the current

period, but also will see their future utilities and wages increased. Likewise, and

workers that produce a low outputs will receive lower wages in the current period and

in the future[47].

Our model is capable of generating much larger wage dispersions than standard

search and matching models do. In the version of the model that is calibrated to the

U.S. data, the computed average wage is 0:4071; and the lowest wage paid is 0:0166,

and the Mm ratio is 24:5, similar to what Hornstein, Krusell and Violante observe in

the U.S. data.

Suppose we use the average wage of the workers in the lowest wage percentile as

the minimum wage in the calculation, then the computed Mm ratio is 13.89. Even if

we use the average wage of the workers in the 5th wage percentile as the minimum

wage in the calculation, the computed Mm ratio is 5.32, much larger than what the

search/matching models permit. Note that our model generates the same job �nding

probability for the unemployed, and hence the same average unemployment duration,

as the calibrated search/matching models do.

2.6 Conclusion

In this paper, we have studied an equilibrium model of the labor market which mod-

i�es the Mortensen-Pissarides framework by taking a dynamic contract approach to

jobs and job separation. The dynamic contract is motivated by a standard infor-

mation friction: moral hazard. Optimal terminations of dynamic contracts generate

equilibrium worker �ows from employment to unemployment and to not-in-the-labor-

force. Matching and bargaining bring unemployed workers to employment. As in the

data, in the model average wages increase with worker tenure, and on average workers

who have stayed longer with the �rm face lower layo¤ probabilities. Our model o¤ers

an important advantage over standard search and matching models: we have shown

quantitatively that our model generates wage dispersions that are similar to those

observed in the data while standard search-matching models cannot.

Our model has a number of possible extensions among which perhaps the most

important and challenging is to add aggregate uncertainties to our currently stationary

environment. As discussed in the introduction of the paper, existing search-matching

models have not been able to account for the observed pattern of wage dynamics

over the business cycle. Our model o¤ers a natural and promising alternative, given

[47]The e¤ect of the dynamic contracting on distribution was �rst discussed in Green (1987) and
Atkeson and Lucas (1991).
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that the structure of compensation is designed to achieve e¢ cient intertemporal risk

sharing in our model.
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2.7 Appendix

2.7.1 Proof of Proposition 2.1

Let �0 denote the set on the right side of the equation we need to show to hold.

We �rst show � � �0. There does not exist V 2 � such that V < u(0) � �(a) +

��v(0), since the worker can always choose to exert the lowest e¤ort a regardless of

the contract o¤ered, and he is guaranteed expected utility v(0) next period. It is also

obvious that there exists no V 2 � such that V � u(1)� �(a) + ��Vmax.

Next, we show �0 is self-generating and hence �0 � �.
For all V 2 �0 with V < (1 + ��)[u(1) � �(a)] + (��)2Vmax(< u(1) � �(a) +

��Vmax), let


(V ) = �, a(V ) = a, ci(V ) = x(V ); and Vi(V ) = y(V )

where x(V ) 2 R+ and y(V ) 2 [v(0); u(1)��(a)+��Vmax) � �0 are chosen to satisfy

V = u(x(V ))� �(a) + ��y(V ):

Obviously, such (
(V ); a(V ); ci(V ); Vi(V )) is feasible, satis�es (6)-(9), (11), (12), and

Vi(V ) 2 
(V ) 8i 2 
(V ), and therefore generates V .
Next, for all V 2 �0 with V � (1 + ��)[u(1)� �(a)] + (��)2Vmax, let


(V ) = ;, a(V ) = a, ci(V ) = x(V ) and Vi(V ) = v(s(V ))

where x(V ); s(V ) 2 R+ are chosen to satisfy

V = u(x(V ))� �(a) + ��v(s(V )):

We now show that this is feasible to do. Observe �rst that

u(0)� �(a) + ��Vmax < (1 + ��)[u(1)� �(a)] + (��)2Vmax:

This is directly implied by Assumption 1. Let

� �
�
(1 + ��)[u(1)� �(a)] + (��)2Vmax

�
� [u(0)� �(a) + ��Vmax] > 0:

Now for a �xed V 2 [(1 + ��)[u(1)� �(a)] + (��)2Vmax; u(1)� �(a) + ��Vmax],

let s(V ) = Vmax � 0:5 � �. Since u(�) is continuous, we can then choose x(V ) � 0

so that the above equation is satis�ed. Last, it is easy to see that the so chosen

(
(V ); a(V ); ci(V ); Vi(V )) satis�es (6)-(9), (11), (12), and Vi(V ) 2 
(V ) 8i 2 
(V ),
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and therefore generates V . The proposition is proved.

2.7.2 Proof of Proposition 2.2

For any s 2 SA, if v(s) is well de�ned, then the solution to the bargaining problem

(113) exists and is unique.

We assume that he value function U : � ! R is continuous and concave. This
assumption is reasonable, for the continuity and concavity of U could always be

obtained through randomization over employment contracts if necessary. See Athey

and Bagwell (2001).

Let s 2 SA. We show that the solution to the following optimization problem

exists and is unique:

maxO(V ) s:t: V 2 �; V � Vn(s); U(V ) + s� �U � 0

where

O(V ) � (U(V ) + s� �U)!(V � Vn(s))
1�!:

We �rst prove existence. Notice �rst that the constraint V 2 � is not binding. To
show this, notice Vn(s) � Vn(0), then use the observation

Vn(0) = u(0)� �(0) + ��v(0):

Notice next that since U(V ) ! �1 as V ! Vmax, the constraint V � Vn(s) can

be replaced by Vn(s) � V �M for some su¢ ciently large M .

Since U(V ) is continuous, we have that the constraint set, which can now be

written as fV 2 R : Vn(s) � V � M; U(V ) + s � �U � 0g, is closed and bounded,
and hence compact. Since the objective function O(V ) is continuous, a solution exists.

We now prove uniqueness. This takes 5 steps.

(i) Notice �rst that V is not optimal if V < V �, where V � is de�ned in equation

(??). To show this, suppose V 2 V �. Then V 0 = V + � could make both the �rm and

the worker strictly better o¤, for a positive but su¢ ciently small �; a contradiction.

(ii) Notice next that since U(V ) is concave by Assumption 2, U(V ) and hence

U(V ) + s � �U are strictly decreasing over [V �; v(1)=(1 � ��)). Since s 2 SA

requires U(V �)+ s� �U � 0, the equation U(V )+ s� �U = 0 has a unique solution.
Denote it V (s). This allows us to rewrite the constraint U(V ) + s � �U as

V � V (s):
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(iii) Notice next then

V 2 fV 0 2 R : Vn(s) � V 0 �M; U(V 0) + s� �U � 0g

if and only if

Vn(s) � V � V (s);

where it must hold that Vn(s) � V (s) since the feasibility set cannot be empty. Now

suppose Vn(s) = V (s): Then of course there is a unique solution that maximizes O(V ).

In the following we show that the solution to the bargaining problem is unique also

in the case Vn(s) < V (s):

(iv) So suppose Vn(s) < V (s): Notice �rst that a solution must satisfy either

V = Vn(s) or V = V (s), or O0(V ) = 0.

Notice that V = Vn(s) cannot be optimal, because V 0 = Vn(s) + � with � positive

but su¢ ciently small can attain O(V 0) > 0 = O(V ). (Note it doesn�t matter whether

Vn(s) � V � or otherwise.)

Notice that V = V (s) cannot be optimal either, because V 0 = Vn(s) � � with �

positive but su¢ ciently small can attain O(V 0) > 0 = O(V ).

Therefore, any solution V must satisfy O0(V ) = 0, or

�U 0(V ) V � Vn(s)

U(V ) + s� �U
=
1� !

!
:

(v) Observe �rst that in order to have a solution, it must hold that U 0(V ) < 0,

otherwise the left hand side of the equation is non-positive while the right hand

side is strictly positive. Thus, we need only consider the set of V s over which the

value function U(V ) is strictly decreasing. Given that U(V ) is concave, this in turn

implies that the left hand side is strictly increasing in V over the set of V s that could

potentially solve the problem. It then follows that there at most one V = Vm(s).

To conclude the proof of the lemma, note that we have proved (ii) under the

assumption that the value function U is di¤erentiable. A proof that does not rely on

the di¤erentiability of U is available upon request.

Under Assumption 2, 0 2 SA.
Suppose 0 62 SA. That is, suppose 0 2 SI . Then v(0) = Vn(0) = Vmin =

u(0)��(0)
1��� .

Now consider the following contract: it is �0 for the �rst period, and then the worker

is given s = 0 to leave the �rm. This contract delivers an expected utility equal to

V0+ ��v(0) to the worker. Clearly V0+ ��v(0) � Vn(0) and V0+ ��v(0) 2 �. This
contract gives an expected pro�t equal to �(V0)+�U to �rm. Now U(V0+��v(0)) �
�(V0) + �U � �U . So s = 0 2 SA. A contraction.
Suppose the function v is well de�ned and continuous. Then (i) Vn is a well de�ned,
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continuous, and strictly increasing function on R+; (ii) Vm is well de�ned, continuous,
and increasing on SA; and (iii) v is strictly increasing on R+.
Let v be well de�ned and continuous. Let s2 > s1 � 0.
(i) That Vn(s) is well de�ned and continuous is because the objective function is

continuous the constraint correspondence is compact. Use then the theorem of the

maximum. To show that Vn(s) is strictly increasing in s, notice that with s2, the

worker can always choose to have strictly more consumption in the current period

while setting his future assets equal to that with s1.

(ii) We show that the function Vm(s) is also continuous. This is the case because:

(a) The objective function in (113) is continuous in V . (b) Given U(V ) ! �1 as

V ! Vmax, there is some M > 0 su¢ ciently large such that for each s 2 SA, the

constraint V � Vn(s) can be replaced by Vn(s) � V � M . This implies a constraint

correspondence that is compact valued and continuous. (c) Apply the theorem of the

maximum.

We next show that Vm is an increasing function. Observe �rst that given U 0(V ) < 0

at the optimal V , and Vn(s) is increasing in s, the left hand side of (??) is strictly
decreasing in s. Remember we have already shown that the left hand side of (??) is
increasing in V . So Vm(s) must be increasing in s.

(iii) If s1; s2 2 SA or s1; s2 2 SI , then v(s2) � v(s1) follows directly right from (i)

and (ii). Suppose s1 2 SI but s2 2 SA. Then

v(s2) = �Vm(s2) + (1� �)Vn(s2) � Vn(s2) � Vn(s1) = v(s1):

Suppose s1 2 SA but s2 2 SI . Suppose v(s1) > v(s2). Then

�Vm(s1) + (1� �)Vn(s1) � Vn(s2);

which in turn implies Vm(s1) � Vn(s2). This contradicts s1 2 SI since

U(Vm(s1)) + s2 � �U > U(Vm(s1)) + s1 � �U � 0:

Finally, since � < 1, v is strictly increasing on R+. This proves the lemma.
With the above lemmas, we now proceed to prove the proposition.

1. Let (Y; d) denote the space of all bounded and continuous functions f : R+ ! X

under the sup norm, denoted d. (Note that boundedness is needed for R+ is not
compact.) Y is a complete normed vector space.

2. De�ne a mapping � as follows:
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8v 2 Y and s 2 R+, �(v)(s) =
(
�Vm(s) + (1� �)Vn(s) , if s 2 SA

Vn(s) , if s 2 SI

subject to (110)-(113).

Notice that given Lemma 6, the function �(v) is well de�ned for all v 2 Y .
3. We show that � maps from Y to Y , that is, � : Y ! Y . We must show that �

preserves boundedness and continuity. That � preserves boundedness is obvious. We

now show that � preserves continuity. Let v 2 Y .
(3a) From Lemma 5, we know that the function Vn(s) is continuous and strictly

increasing on R+. We also know that the function Vm(s) is continuous and increasing
on SA.

(3b) Observe that SI is an open set in R+ and hence SA is closed. To show this,
let s 2 SI . Since 0 2 SA by Lemma 4, we have s > 0. This implies U(V )+s��U < 0

for all V 2 � such that V � Vn(s). Given the continuity of U and Vn, there exists

" > 0 such that (s� "; s+ ") � SI .

(3c) Since SI 2 R+ is open, it can be written as an union of disjoint open intervals
in R+.
(3d) Observe next that [0; (Vn)�1(V �)] � SA. This is because : �U � U(V �) by

equation (22), the value function U(V ) is concave by Assumption 2, and the function

Vn(s) is continuous and strictly increasing by Lemma 5.

(3e) With (3c) and (3d), there exists a vector fb0; ai; bi; i = 1; 2; :::;mg � R+ such
that

SA = [0; b0] [
�
mS
i=1

[ai; bi]

�
where

(Vn)
�1(V �) � b0 < a1 � b1 < � � � < am � bm

and the values of m and bm may be in�nity.

(3f) Clearly, �(v) is continuous on R+�fb0; a1; b1; � � �; am; bmg. So, �(v) is contin-
uous on R+ if and only if Vm(s) = Vn(s) for s 2 fb0; a1; b1; � � �; am; bmg.
Suppose Vm(bi) > Vn(bi) � V � for i 2 f0; 1; � � �;mg, Since Vn is continuous, there

exists " > 0 such that [bi; bi + ") � SA, a contradiction.

Suppose Vm(ai) > Vn(ai) � V � for i 2 f1; � � �;mg. since Vn(ai) > V �, U is strictly

decreasing for V � V �. This implies that U(Vn(ai))+ai��U > 0. There exists " > 0

such that (ai � "; ai] � Sa which is a contradiction.

We have proved that the function �(v) is continuous.

4. We show that the mapping � is a contraction. Since the underlying space is a

normed vector space of bounded and continuous functions, we need only verify that

the Blackwell su¢ cient conditions are satis�ed.
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(Monotonicity) Let v1; v2 2 Y and v1 � v2. We must show that �(v1)(s) � �(v2)(s)
for all s 2 R+.
Let SiA, S

i
B, V

i
n, V

i
m (i = 1; 2) denote the sets SA and SB and the functions Vn and

Vm induced by vi through (110)-(113). Notice �rst that V 1
n � V 2

n .

(i) Suppose s 2 S1A \ S2A. Then the property of the CES objective function guar-
antees that V 1

m(s) � V 2
m(s), and hence �(v

1)(s) � �(v2)(s).
(ii) Suppose s 2 S1I \ S2A. We need only show V 1

n (s) � V 2
m(s), which holds, for

otherwise s 2 S1A.
(iii) Suppose s 2 S1I \ S2I . In this case �(v1)(s) = V 1

n (s) � V 2
n (s) = �(v

2)(s):

(iv) Suppose s 2 S1A \ S2I . In this case, V 1
m(s) � V 1

n (s) � V 2
n (s), implying s 2 S2A,

a contradiction. So s 2 S1A \ S2I cannot be the case.
We therefore have shown that the mapping � is monotonic.

(Discounting) Let v1; v2 2 Y and let v2 = v1 + a for any a > 0. We show that

�(v2)(s) � �(v1)(s) + ��a for all s 2 R+.
Observe �rst that V 2

n (s) = V 1
n (s) + ��a for all s 2 R+.

Consider �rst the case s 2 S1A \ S2A. The desired result in the case holds trivially
if the maximized Nash product is zero. In the following, we consider the case where

the maximized Nash product is strictly positive.

Let

'i = �
1� !

!

U(V i
m(s)) + s� �U

V i
m(s)� V i

n(s)
; i = 1; 2;

where 'i for i = 1; 2 is the slope of the value function U(V ) at optimum, i.e., at

V = V i
m(s):

Given the concavity of U and the di¤erentiability of indi¤erence curve, U has to

be under the following straight lines

fi(x) = 'i(x� V i
m(s)) + U(V

i
m(s)); i = 1; 2

Suppose V 2
m(s) > V 1

m(s) + ��a. Then '1 < '2 < 0. Therefore,

U(V 2
m(s)) � f1((V

2
m(s)))) U(V 1

m(s)) > f2((V
1
m(s)));

a contradiction. So, we conclude that V 2
m(s) � V 1

m(s) + ��a.

The cases s 2 S1A�S2A, s 2 S2A�S1A, and the case s =2 S1A[S2A are straightforward
to analyze and are left for the reader. This proves that the mapping � has the

discounting property and hence we have shown that � is a contraction.

5. By the contraction mapping theorem then, v 2 Y and is the unique �xed point
of �. So v is continuous and the proposition is proved.
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2.7.3 Proof of Proposition 2.3

Suppose i 2 
 but U(Vi) < U � v�1(Vi), then move i from 
 to 
0 while not changing
the values of a, ci and Vi. The modi�ed contract would remain feasible, but the �rm�s

value is strictly increased. On the other hand, suppose U(Vi) > U�v�1(Vi) but i 62 
.
Then move i from 
0 to 
 to increase the �rm�s value. The proposition is proven.

2.7.4 Proof of Proposition 2.4

That the worker is terminated with expected utility V implies

U(V ) < U � v�1(V ):

Now this worker would go immediately to the market to look for a new match if and

only if

9 V 0 � Vn(v
�1(V )) such that U(V 0) + v�1(V ) � �U:

But this implies the existence of Vm(v�1(V )) and it holds that Vm(v�1(V )) � V . Let

V 0 = Vm(v
�1(V )). Then

U(V 0) + v�1(V ) � �U:

Suppose U = 0. Hence, U(V 0) > U(V ). The proposition is proven.

2.7.5 Proof of Proposition 2.5

We �rst show that with the equilibrium contract where U = 0, it holds that

b
 � SA:

This is easy to show. For each v�1(V ) 2 b
, we have (i) V 2 [v(0); Vmax) � �;

(ii) V = v(v�1(V )) � Vn(v
�1(V )); and (iii) U(V ) + v�1(V ) � 0. So v�1(V ) 2 SA.

Remark: The fact that U = 0 is important for part (iii) of the proof.

Next, we show b
A � SA:

To show this, let s = 0 and V = V� 2 �. Clearly, V� � Vn(0) and U(V�) + 0 � �U by

(23). Remark: the equilibrium condition U = 0 is not needed in the proof here.

Last, with the equilibrium contract with U = 0, it holds that

b
I � SI :

This is a corollary of Proposition 2.4 which says that if s 2 b
 then s 62 SA and hence
s 2 SI . The proposition is proven.



www.manaraa.com

101

2.7.6 Proof of Proposition 2.6

We prove the �rst part of the proposition by way of contradiction. Suppose otherwise.

Then there exists a strictly monotonic sequence fsqg such that sq 2 SI for all q, and
sq ! 0 as q !1.
Next we show that it must hold that Vn(sq)! 0 as q !1. Since sq 2 SI 8q,

v(sq) = Vn(sq) = max
0�c�sq

fu(c)� �(0) + ��v[(1 + r)(sq � c)=�]g:

Let q ! 0 on both sides of the above equation to obtain

u(0)� �(0) + ��v(0) = v(0)

or

v(0) = [u(0)� �(0)]=(1 + ��) = 0:

So Vn(sq)! v(0) = 0 as q !1.
Now for each q and sq, consider the following contract for the unemployed worker

with assets sq. The worker is employed for one period. For the period the worker

is employed, his compensation is determined by �0. The worker is then terminated

with assets s. So the worker�s utility under this contract is H0+��v(sq). For q large

enough, it must then hold that

H0 + ��v(sq) � (1� ��)Vn(sq) + ��Vn(sq) = Vn(sq):

This holds because (a) sq 2 SI so v(sq) = Vn(sq); (b) H0 > 0; and (c) Vn(sq) ! 0 as

q !1.
Finally, notice that for q large enough, it holds that

�(H0) + sq � ��sq + �U > �U:

Thus we have shown sq 2 SA for q large enough. A contradiction. This proves the
�rst part of the proposition.

We now prove the second part of the proposition. We know that 0 2 SA. Let

s� � minfs 2 SIg. Given that v(�) is continuous, it must hold that

Vn(s�) = �Vm(s�) + (1� �Vn(s�);

or

Vn(s�) = Vm(s�):
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It then must hold that

U(Vn(s�)) + s� = �U = 0::

Let f(s) � U(Vn(0)) + s for all s � 0. Observe �rst that

f(0) = U(Vn(0)) + 0 = U(V �) > 0;

where V � > Vn(0). Observe next that over the interval [0; v�1(V �)], f(s) is strictly

monotone increasing in s, for Vn(s) is strictly increasing in s at all s and U(V ) is

strictly increasing in V over the interval [Vn(0); V �]. Therefore a solution (??) cannot
exist over the interval [0; v�1(V �)]. That is

s� > v�1(V �):

This proves the proposition.

2.7.7 Proof of Proposition 2.7

We need only show that there exists V > v(0) such that

U(V ) � U � v�1(V ); 8V > V :

In turn, we need only show that there exist functions Û(�) and C(�) such that for V
su¢ ciently large, it holds that

U(V ) � Û(V ) � U � C(V ) � U � v�1(V ):

We now construct the functions Û(�) and C(�). First, set for each V � v(0);

C(V ) � u�1[(1� ��)V ]

1� ��
:

C(V ) is the cost to the �rm of terminating a worker who is not to participate in the

labor market in the rest of his life, so it must hold that C(V ) � v�1(V ) for all V .

Next, for each V � v(0), de�ne Û(V ) as follows. Imagine a �rm who currently

employs a worker with expected utility V at the beginning of a period. Suppose this

worker is not subject to moral hazard. That is, when this worker is employed by

the �rm, his e¤orts are perfectly observable to the �rm so the the �rm can make

the worker�s compensation contingent on the worker�s e¤orts. With his worker, the

optimal termination strategy for the �rm is to either never terminate the worker until

he dies, or terminate him after one period.

Consider �rst the case where the worker is never terminated. In this case, the
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worker is given a constant compensation say c and he is asked to make a constant

e¤ort say a, where c and a satisfy

V =
u(c)� �(a)

1� ��
:

Since a � a,

c � u�1((1� ��)V + �(a)):

In this case then the value of the �rm is less than or equal to

Û1(V ) �
� � u�1((1� ��)V + �(a))

1� ��
:

Consider next the case in which the worker is terminated after one period. Con-

sider the best possible scenario for the �rm where, after termination, the worker is

employed every period by some other �rm which gives the worker all the surplus of

the match so the worker�s current employer can incur the least possible cost of ter-

mination. Suppose this translates into a constant compensation of c with a constant

level of e¤ort a� � a > 0 for the worker after termination. Now let a1 denote optimal

e¤ort in the �rst period. Let c1 denote the optimal compensation for the worker in the

�rst period, and c2 the optimal compensation in each period after the termination.

Then

V = u(c1)� �(a1) +
��

1� ��
[u(c2 + c)� �(a�)]:

To minimize cost, the �rm sets c1 = c2 + c, and hence

V + �(a1) +
��

1� ��
�(a�) =

u(c2 + c)

1� ��
;

and so

c2 = u�1[(1� ��)(V + �(a1)) + ���(a�)]� c:

The value of the �rm in this case is therefore equal to

� � (c2 + c)� ��

1� ��
c2

= � � c� u�1[(1� ��)(V + �(a1)) + ���(a�)]� c

1� ��

� � � ��

1� ��
c� u�1[(1� ��)V + �(a)]

1� ��

� Û2(V ) (117)

Let Û(V ) = maxfÛ1(V ); Û2(V )g for all V . It is easy to see that Û1(V ) > Û2(V ),
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so Û(V ) = Û1(V ). Therefore equation (??) holds if and only if

� � u�1((1� ��)V + �(a))

1� ��
� U � u�1((1� ��)V )

1� ��
:

or

� � (1� ��)U � u�1[(1� ��)V + �(a)]� u�1[(1� ��)V ]:

This proves the proposition.

2.7.8 Proof of Proposition 2.8

Let s = maxs2SA s, which is well de�ned since SA is compact. Consider the optimiza-

tion problem faced by a non-employed worker with asset s > s,

max
c�0;t2f1;2;���g[f1g;s0

�
1� kt

1� k
[u(c)� �(0)] + ktv(s0)

�
subject to

1� kt

1� k
c+ kts0 = s

s0 2 SA

where k = �� = �
1+r

< 1.

Note that if t = 1, then kt = 0, and the choice of s0 is not relevant. Note that
it is optimal to make consumption constant across the periods before reentering the

labor market with asset s0 2 SA at the period t+1. The case t =1 is the case where

the worker consumes the annuity of his/her asset every period and never comes back

to the labor market.

For the purpose of this proof, we can replace the constraint t 2 f1; 2; � � �g [ f1g
in the optimization problem above by t 2 R+ [ f1g. Observe next that it is optimal
to have s0 = s, by the de�nition of the function v(�).
Let the �rst derivative of the objective function with respect to t be denoted

H(s; t),

H(s; t)��kt ln k
 
u[ 1�k
1�kt (s� kts)]� �(0)

1� k
� v(s)� s� s

1� kt
u0[
1� k

1� kt
(s� kts)]

!
��kt ln kF (s; t):

Notice �rst that �kt ln k > 0 for all t 2 R+. Notice next that F (s; t) a strictly
decreasing in t since its partial derivative with respect to t is

�(1� k)kt ln k(s� s)2

(1� kt)3
u00
�
1� k

1� kt
(s� kts)

�
< 0
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and goes to

L(s; s) =
u[(1� k)s]� �(0)

1� k
� v(s)� (s� s)u0[(1� k)s]

as t goes to in�nity. Last, observe that

F (s; 0) =
u(1)� �(0)

1� k
� v(s) > 0:

The above observations imply that t =1 is optimal if and only if L(s; s) � 0.
So consider the function L. Observe �rst that

L(s; s) =
u[(1� k)s]� �(0)

1� k
� v(s) � 0;

where the inequality follows from the de�nition of the function v(�). Next, notice

L1(s; s) = �(1� k)(s� s)u00[(1� k)s] > 0:

Third, notice

lim
s!1

L(s; s) = Vmax � v(s) > 0

which holds because lim
s!1

(s� s)u0[(1� k)s] = 0 given u(�) is bounded.
With the above observations, we conclude that L(s) � 0 if and only if s � s�

where s� solves

L(s�; s) = 0;

and s� > s. The proposition is proved.
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